NUW COSMOLOGY BEYOND THE AVERAGE WITH ATLAS

Newcastle University Cora Uhlemann

Massively Parallel Large Area Spectroscopy from Space, June 2021

GOOD OLD DAYS -> FUTURE

CMB: one snapshot linear, almost Gaussian

LSS: motion picture nonlinear, non-Gaussian

TRADITIONAL STATISTICS

Gaussian: 2-pt correlation

$$\xi(r) = \langle \delta(\boldsymbol{x}) \delta(\boldsymbol{x} + \boldsymbol{r}) \rangle$$

nonlinear → non-Gaussian

TRADITIONAL STATISTICS

Gaussian: 2-pt correlation

$$\xi(r) = \langle \delta(\boldsymbol{x}) \delta(\boldsymbol{x} + \boldsymbol{r}) \rangle$$

nonlinear → non-Gaussian

Higher N-pt correlations

 $N \ge 3$ hard to measure

EFFICIENT STATISTICS

My approach: 1-point PDF capture non-Gaussian info

probability

COUNTS-IN-CELLS THEORY

Large-deviation statistics

symmetry statistics ↔ dynamics

spherical collapse

$$\mathcal{P}_{R,z}(\rho) \sim \exp$$

Bernardeau 94 **CU**++ 16

$$-\frac{\delta_L(\rho)^2}{2\sigma_L^2(z,r(R,\rho))}\frac{\sigma_L^2}{\sigma_{\rm NL}^2}$$

linear variance & growth

nonlinear variance

accurate PDF from first principles, not lognormal

 $\mathcal{P}(\rho),$ R=10 Mpc/h

width: clustering amplitude σ_8

environment-dependence: Mv

CU, Friedrich ++ 19

sims: Quijote **CU**, Friedrich ++ 19

growth: dark energy e.o.s. w₀/w_a

sims: Quijote

 $(\ln \rho - < \ln \rho >_{\text{fid}}) / \sigma_{\ln \rho, \text{fid}}$

WEAK LENSING & TRACERS

source galaxies

galaxy shapes convergence к

& shear

WEAK LENSING & TRACERS

source galaxies

lens galaxies

galaxy shapes convergence к & shear

galaxy counts density δ_g spec & photo-z

WEAK LENSING-IN-CELLS

convergence: projected matter density

→ construct PDF

Bernardeau & Valageas `00 Barthelemy, Codis, **CU**++ 19

WEAK LENSING-IN-CELLS

GALAXY COUNTS-IN-CELLS

with Lagrangian bias (2pt-compatible) & shot noise

computed with <u>CosMomentum</u> code

Friedrich +**CU**+ *in prep*

NUW COSMO BEYOND AVERAGE

PDFs=Powerful non-Gaussian statistics

robust & accurate predictions different density environments

Ideal: Matter density PDF $\Omega_{m}, \sigma_{8}, M_{v}, f_{NL}$ **CU**, Friedrich ++ 19 Friedrich, **CU** ++ 19

 $W_{0,a}, \Omega_{rc}$, f_{R0} Matteo Cataneo, Alex Gough & CU in prep

Real: weak lensing & galaxy counts PDF

Iensing convergence: Ω_m , σ_8 , w_0 , M_v Boyle, **CU** ++ 20 galaxies: Lagrangian bias + shot noise Friedrich +**CU**+ *in prep*