Redshift calibration for weak lensing

European Research Council

Established by the European Commission

Hendrik Hildebrandt - Ruhr University Bochum

RUB

Cosmic shear

CAPTION

Sensitive to:
Matter distribution
Geometry

Observables:
Ellipticities
Photo-z

Statistical measurement of many galaxies

Tomographic binning along the line-of-sight

Redshift dependence of cosmic shear

 $\langle \gamma^2 \rangle \propto \sigma_8^2 \ z_s^{1.7} \ \Omega_m^{1.7} \ \theta^{\left(\frac{n-1}{2}\right)}$

van Waerbeke et al. (2006)

0.01

Stage-III surveys are a factor of 5-10 less sensitive to redshift errors.

Huterer et al. (2005)

Photometric redshifts

2

Re-weighting the calibration sample

Redshift

Redshift calibration with kNN weighting

Re-weight spec-z surveys to be more representative.

1. Magnitude space needs to be fully covered.

2. Requires unique relation colour-redshift relation.

Hildebrandt et al. (2017)

Self-organising map

Self-organising map of mag space

Fiducial Training

~99% coverage of 9D mag space in KV450.

Wright et al. (2019)

KiDS-1000 SOM <z> accuracy

Wright et al. (2020a)

		Tinilia
1	2	+
		1.5

 Spec-z sample does not have to be representative Correct for evolution of galaxy bias

Spectroscopic sample (redshift slices)

Cross-correlation amplitude

Redshift

Image credit: Springel et al. (2005)

KiDS-1000, clustering-z

Clustering-z inherit the uncertainty from the SOM n(z) in this way.

Hildebrandt et al. (2021)

Ζ

The role of ATLAS

- Redshift calibration of weak lensing is one of ATLAS' core science goals.
- Deep, dense, and wide spectroscopic sample.
- Might make redshift calibration for Roman weak lensing unnecessary.
- 3D lensing instead of tomographic binning.
- For all other overlapping projects it will be the definitive calibration resource.

Summary

- Complementary approaches for n(z) calibration (SOM, clustering-z, and more).
 Can be combined, e.g. Hierachical Bayesian Model.
- Colour-based SOM can achieve $\sigma_{<z>} < \sim 0.01$. Needs to improve by factor 5-10.
- Clustering-z competitive and consistent, but additional development needed.
- Galaxies and also galaxy surveys are complex beasts
 => sophisticated simulations indispensable.
- ATLAS will provide redshifts for weak lensing with *Roman* (no need for calibration?) and exquisite calibration for *Euclid* and *LSST@Rubin*.