Stellar Chemistry from Resolved Stars Beyond 1 Mpc w/ Space-Based MOS

Nathan Sandford UC Berkeley

In Collaboration w/

Dan Weisz (UCB) Yuan-Sen Ting (ANU)

NUCLEOSYNTHESIS: α -elements & Iron-peak elements

The Origin of the Solar System Elements

1 H		big bang fusion 🛛 🍝					cosmic ray fission								
Li	4 Be	merging neutron stars					exploding massive stars 🜌					5 B	၀ ၀	N N	
11 Na	12 Mg	dying low mass stars					exploding white dwarfs 🙍					13 Al	14 Si	15 P	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	- 77 - Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	
87 Fr	88 Ra														
			57	58	59	60	61	62	63	64	65	66	67	68	
			La 89	Ce 90	Pr 91	Nd 92	Pm	Sm	Eu	Gď	Tb	Dy	Ho	Er	
			Ac	Th	Pa	U									

Graphic created by Jennifer Johnson

Fe

dwarf

Cr

Core-Collapse SNe

- Short enrichment
- timescale (~10-100 Myr)
- Produces higher fraction

of α elements

Type la SNe

- Longer enrichment timescale (>100 Myr)
- Produces higher fraction
- of Iron-Peak elements

red giant

NUCLEOSYNTHESIS: $[\alpha/Fe]$ vs. [Fe/H] Evolution

Image Credit: Cristina Chiappini

Core-Collapse SNe

- Short enrichment
- timescale (~10-100 Myr)
- Produces higher fraction

of α elements

Type la SNe

- Longer enrichment timescale (>100 Myr)
- Produces higher fraction
 - of Iron-Peak elements

Image Credit: Cristina Chiappini

$|\alpha/Fe|$ in the Milky Way DISTANCE ~ 25 KPC

$\left| \alpha / \text{Fe} \right|$ in the Milky Way DISTANCE ~ 25 KPC

- Thick Disk & Halo Stars
- Older, Metal-poor population
- Shorter formation timescale
- Ex-situ & In-situ star formation

Low α

- Thin Disk
- Younger, Metal-rich population
- Longer formation timescale
- In-Situ star formation

Weinberg+ 2019

0.50

0.25

$\left[\alpha/Fe \right]$ in Milky Way Satellites **DISTANCE** ~ 100 KPC

$\left[\alpha/\text{Fe} \right]$ in Milky Way Satellites **DISTANCE** ~ 100 KPC

Image Credit: J. Bullock/M. Geha/R. Powell

$[\alpha/\text{Fe}]$ vs [Fe/H] (APOGEE DR16)

$\left[\alpha/Fe \right]$ IN MILKY WAY SATELLITES **DISTANCE** ~ 100 KPC

Image Credit: J. Bullock/M. Geha/R. Powell

$[\alpha/\text{Fe}]$ vs [Fe/H] (APOGEE DR16)

$\left| \alpha / \text{Fe} \right|$ IN THE M31 SYSTEM **DISTANCE** ~ 0.8 MPC

PAndAS Survey of M31 & M33

- Lots of substructure
- Very different accretion history than the MW
- How does this manifest in $[\alpha/\text{Fe}]$ vs. [Fe/H]?

$[\alpha/Fe]$ IN M31 SATELLITES **DISTANCE ~ 0.8 MPC**

Martin+ 2013; McConnachie+ 2018

M31 Satellites 0.5 0.0AndVII N=56 -0.51.00.5 0.0 -0.5[α/Fe] 0.0 -0.50.5 0.0-0.51.0 0.5 0.0 AndX N=9-0.5-3 -2-1 [Fe/H] Kirby+ 2020

$\left[\alpha/\text{Fe} \right]$ IN M31'S OUTSKIRTS **DISTANCE** ~ 0.8 MPC

Martin+ 2013; McConnachie+ 2018

M31 Outskirts $[\alpha/Fe]$ Final sample TiO sample 0 f130_2 -2.5-1.5-0.5[Fe/H] Gilbert+ 2019; Escala+ 2020

$\left[\alpha/Fe \right]$ IN M31'S DISK **DISTANCE** ~ 0.8 MPC

- **JWST/NIRSpec** (6.5-meters)
 - 0".2 Spatial Resolution
 - Low-Resolution, Near-IR Spectra $R \sim 2700, 0.97-1.82 \,\mu m$

$|\alpha/Fe|$ IN M31'S DISK **DISTANCE** ~ 0.8 MPC

JWST/NIRSpec

- 0".2 Spatial Resolution
- Low-Resolution, Near-IR Spectra
 - $R \sim 2700, 0.97-1.82 \,\mu m$

<u>Sandford+ 2020</u>:

 $t_{\rm exp} \sim 5$ hrs

 σ [Fe/H] $\sim 0.02 \, \mathrm{dex}$

 $\sigma[\alpha/\text{H}] \sim 0.03 \text{ dex}$

Dalcanton+ 2015

GO Cycle 1

- Searching for α -Abundance Bimodality in the M31 Disk"
- Pl's: Nidever, Gilbert & Tollerud
- > $n_{\rm stars} \sim 130$ @ $R \sim 15$ kpc

$\left[\alpha/\text{Fe} \right]$ BEYOND THE LOCAL GROUP **DISTANCE > 1 MPC**

CONCLUSION

- Space-Based MOS will
 - Transform the field of faint, crowded field stellar spectroscopy
 - Enable MW spectroscopic science in M31
 - Enable Local Group spectroscopic science out to several Mpc

Sandford+ 2020

Forecasts for 20+ spectrographs, including: Keck/DEIMOS, VLT/GIRAFFE, Keck/FOBOS, Subaru/PFS, MSE, © 2020. The American Astronomical Society. All rights reserved JWST/NIRSpec, E-ELT/MOSAIC

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 249:24 (40pp), 2020 August

https://doi.org/10.3847/1538-4365/ab9cb0

Forecasting Chemical Abundance Precision for Extragalactic Stellar Archaeology

Nathan R. Sandford¹, Daniel R. Weisz¹, and Yuan-Sen Ting^{2,3,4,5} Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA; nathan_sandford@berkeley.edu ² Institute for Advanced Study, Princeton, NJ 08540, USA ³ Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA ⁴ Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA ⁵ Research School of Astronomy and Astrophysics, Australia National University, Cotter Road, ACT 2611, Canberra, Australia Received 2020 January 29; revised 2020 May 21; accepted 2020 June 11; published 2020 July 29

JWST VS. ELTS

RECOVERY OF INDIVIDUAL ELEMENTAL ABUNDANCES

Sandford+ 2020