

Robust constraints on the physical properties of individual passive galaxies from Lick indices in the LEGA-C survey

Nicola Borghi

Main collaborators: Michele Moresco, Andrea Cimatti, Alexandre Huchet Lucia Pozzetti, Salvatore Quai, Kang Jiao

Based on Borghi et al. 2021 (on ArXiv soon)

Massively Parallel Large Area Spectroscopy from Space – 23 June 2021

Galactic archeology & Lookback studies

Cosmology with massive and passive galaxies

(M. Moresco talk, 22nd June)

Assuming a FRWL metric: $H(z) = \frac{\dot{a}}{a} = -\frac{1}{1+z} \frac{dz}{dt}$ (Jimenez & Loeb, 2002) $H(z) = \frac{\dot{a}}{a} = -\frac{1}{1+z} \frac{dz}{dt}$

- ✓ Direct measure of H(z)
- ✓ Differential approach
- ✓ Cosmological model-independent ideal to test cosmological models

Key requirements:

- 1. Pure passive systems → different selection criteria (Renzini+06; Franzetti+07; Moresco+13)
- 2. Robust *dt* estimates **without cosmological priors**

The LEGA-C survey (0.6 < z < 1)

(see Van der Wel et al. 2016 and Straatman et al. 2018)

- 2 deg² in the COSMOS field; K_{s,lim} = 20.7 -7.5 log((1+z)/1.8)
- VLT / VIMOS HR-Red; $R \sim 3500$, with S/N ≥ 20
- Narrow λ_{rest} interval uniformly sampled, $\Delta \lambda \sim 500$ Å

Selection of passive galaxies

- NUVrJ (Ilbert et al. 2013)
- EW[OII]λ3727 < 5 Å cut (e.g. Mignoli et al. 2009)
- Visual inspection of $[OII]\lambda 3727$ and $[OIII]\lambda 5007$ lines

300

Z ₁₅₀,

 \succ 350 massive and passive galaxies with $~\langle {\rm sSFR}/{\rm yr} \rangle = -12.1$

PyLick

Flexible Python tool to measure spectral absorption features implementing several (currently 54) index definitions. New indices can be easily defined by the user (e.g. Call H and Call K).

Spin-off: the H/K ratio

- Call K bimodality, passive threshold ~5.5 Å
- H/K = (Call H + Hε) / Call K strong Hε absorption from A & B-type stars, <1 Gyr episodes of star formation
- $H/K < 1.1 \leftrightarrow sSFR/yr < -11$

(see also e.g. Rose 1984, Longhetti+99, Moresco+18)

Selection of passive galaxies

- 1. Thomas, Maraston & Johannson 2011 (TMJ) SSP models \rightarrow (*age*, [Z/H], [α /Fe])
- 2. Optimized set of spectral indices:
- 3. Bayesian approach **with uninformative priors** (e.g. no cosmological priors!)

> Constraints for **140 individual** passive galaxies

 $\langle S/N \rangle \simeq 26 \, per resol.$ element

 $\sigma_{age}\simeq 0.4~{\rm Gyr}, \quad \sigma_{\rm [Z/H],[\alpha/Fe]}\simeq 0.05~{\rm dex}$

Results – scaling relations

➤ Vertical offset of ~5.5 Gyr → very good agreement with the ageing of the Universe!

Chemical scaling relations similar to the local ones and consistent with mass-downsizing

(more massive galaxies are older, have higher [Z/H] and build up their mass over shorter Δt , e.g. Cowie et al. 1996, Cimatti et al. 2006)

У	$a \pm \operatorname{err}(a)$	$b \pm \operatorname{err}(b)$	rms
$\log age/\mathrm{Gyr}$	0.48 ± 0.14	-0.63 ± 0.33	0.14
$[\mathrm{Z/H}]$	0.26 ± 0.17	-0.53 ± 0.40	0.17
$[\alpha/{\rm Fe}]$	0.23 ± 0.11	-0.39 ± 0.26	0.11

NOTE—Fits are of the form: $y = a \cdot \log \sigma_{\star} + b$.

(see also, e.g. Thomas+05, 10; Gallazzi+05, 14; Onodera+12, 15; Jørgensen+13; Choi+14; McDermid+15; Lonoce+15, 20; Scott+17, Siudek+17; Wu+18; Belli+19; Carnall+19; Estrada-Carpenter+19; Morishita+19; Tacchella+21; Beverage+21)

Results – age-redshift relations

- > Confirms the downsizing scenario and the passive nature of this population
- > Two nearly parallel age-z relations for both the higher $\sigma \sim 230$ km/s and the lower $\sigma \sim 200$ km/s mass regimes.

A new measurement of H(Z)

- Four independent H(z) measurements, wmean in z and in o₁ to maximize S/N
- First H(z) estimate derived analysing single galaxies with Lick indices
 - poorly mapped redshift range
 - near to the transition phase
 - robust against SPS model choice (test with Vazdekis et al. 2015)

A new measurement of H(Z)

- Four independent H(z) measurements, wmean in z and in o_∗ to maximize S/N
- First H(z) estimate derived analysing single galaxies with Lick indices
 - poorly mapped redshift range
 - near to the transition phase
 - robust against SPS model choice (test with Vazdekis et al. 2015)
- Systematic under/over-estimates of galaxy ages (±1Gyr) using different index sets
- Final H(z) measurement robust against (even very) different index sets (<0.2σ)!

Cosmological parameters constraints

Table 1. Contraints for a fACDM model

Priors	H_0	Ω_m	t_{f}
	$[{\rm km}\;{\rm s}^{-1}\;{\rm Mpc}^{-1}]$		[Gyr]
Flat	74^{+23}_{-16}	$0.38\substack{+0.36 \\ -0.23}$	$2.9^{+1.4}_{-1.0}$
$\Omega_m \sim \mathcal{N}(Planck18)$	79^{+14}_{-11}	$0.31\substack{+0.01\\-0.01}$	$2.8^{+0.9}_{-0.9}$

- Promising, but high degeneracies due to small redshift leverage.
- Not straightforward to combine different datasets (e.g. different methods to compute ages, index sets, ...).

Summary

1. Selected 350 massive and passive galaxies from LEGA-C DR2 at 0.6 < z < 1

- High R~3500, and (S/N) ≈ 18 and minimal contamination (confirmed from SED-derived properties, composite spectrum, observed indices e.g. H/K).
- 2. The H/K ratio is as promising diagnostic to detect star-forming contaminants.
- 3. Derived SSP (*age*, [Z/H], $[\alpha/Fe]$) for 140 passive galaxies without assuming cosmological priors.
 - Extensive study of several index combinations to select the optimal one. Results consistent with a passively evolving
 population.
- 4. Measured positive (*age*, [Z/H], $[\alpha/Fe]$) scaling relations as a function of stellar velocity dispersion.
 - Slopes in agreement with local results and intermediate redshift results based on composite spectra analysis.
- > Cosmological studies (Borghi et al, 2021b):
 - A new direct H(z=0.7) measurement
 - Hubble constant constraint assuming a fACDM model

Additional refs. for the CC method:

- Jimenez, R. & Loeb, A.(2002) CCs method definition
- Moresco, M., et al. (2012a&b, 2016a&b, 2018, 2020) H(z) measurements and cosmology constraints
- Haridasu, B. S., et al. (2018); Gómez-Valent, A. & Amendola, L. H (2018) H0 from CCs
- Vagnozzi, S., et al. (2020) cosmo geometry

Some of the analyzed index combinations

Combo ID	N (in common)	$\Delta age~(\sigma)$	$\Delta [\rm Z/H]~(\sigma)$	$\Delta [\alpha/{\rm Fe}]~(\sigma)$
baseline	140(140)	—	—	—
1	105 (95)	$0.04 \ (0.06)$	-0.04(0.42)	-0.05(0.64)
2	131 (115)	-0.42(0.63)	$0.03\ (0.33)$	-0.06(0.76)
3	39(39)	0.05~(0.08)	$0.00 \ (0.02)$	$0.08 \ (0.92)$
4	11 (8)	$0.25\ (0.36)$	-0.01 (0.09)	0.09(1.15)
5	133 (98)	-0.17(0.25)	$0.01 \ (0.08)$	-0.13(1.61)
6	119(102)	-1.11 (1.54)	$0.11 \ (0.95)$	-0.06(0.69)

Observed index-sigma-z trends

Study of the convergence

age-z for different cosmologies

