AMAZED : Algorithms for Massive Automated Z(redshift) Estimation and Determination

V. Le Brun for the AMAZED Team P.-Y. Chabaud, M. Gray, C. Surace, D. Vibert, A. Allaoui, M. Sarkis, A. Schmitt (CeSAM)

> Contributions from S. Arnouts, M. Bethermin, J.G. Cuby and the Euclid and PFS science working groups

Massively Parallel Large Area Spectroscopy from Space 23/06/2021

A versatile fully automated redshift measurement library

- Human participation up to now (VVDS, VIPERS, DEEP2, even SDS See SAN
 - No more than 10⁵ spectra
 - Validation of software results :

Redmonster (Hutchinson et al. 2016), EasyLife (Garilli et al. 20XX)

- Impossible for surveys in preparation (Euclid, PFS, Roman, ...) :
 - Several millions of objects
 - High observing rate
 - We don't want to do it anymore

Building on the heritage of VIMOS surveys

A versatile fully automated redshift measurement library

- Adaptable to any instrumental configuration (UV/visible/IR/?)
- Takes into account instrumental effects : LSF, (co)variance
- Fully automated bayesian inference redshift measurement (and error)
- Bayesian object classification (Galaxy, quasars, stars)
- Quantification of reliability and ultimately quality of fit (detection of monsters)
- Core of Euclid, PFS and Roman pipelines

LABORATOIRE

- A least-square fit of model parameters weighted by signal variance
 - Fixed redshift grid
 - Logarithmic sampling for FFT
 - Go back to Tonry & Davis (1979) for a fundamental description
- Redshift Probability Distribution Function calculation for each model
- Combination of all zPDFs into one
- The N best redshifts are identified from the PDF peaks
- Measurements of spectral features at the best redshifts solutions

CeSA

The galaxy model

- Continuum (including stellar absorption lines)
 - 21 templates built from BC03 models (Tremonti+ 2003)
 - The amplitude is fitted
- Emission lines
 - Predefined list of lines
 - Relative ratios predefined (and updated) from 13 VVDS stacked spectra
 - Redshift and width are free parameters
- Interstellar absorption lines
 - Velocity shift is fixed (-150 km/s), but could be free
 - Relative ratios predefined from 13 VVDS/Steidel stacked spectra
- Intergalactic Medium absorption
 - Tabulated from Meiksin (2002) : 7 curves at 11 redshifts between 2 and 7
- Interstellar extinction
 - Tabulated from Calzetti (2000)

DE MARSEILLE

The method – Redshift Determination

- PDF from each model are combined
 - Marginalization (over all model parameters), final PDF delivered.
- The best redshift is taken at the maximum of integrated probability
 - Error on redshift estimated via Gaussian fit
 - Integral value under the PDF peak as Reliability level
 - To be improved with ML/DL Techniques
- Secondary redshift values at following peaks
- Code is able to integrate priors
 - Strong lines : greater probability for "Main Strong lines" (Ha, OII, OIII)
 - $H\alpha$: greater probability to be an Ha line
 - N(z) : an a-priori redshift distribution of Ha emitters

The method – Redshift Determination

Next → Results List 1 Undo zoom 5

Previous

0											0
R ^	Reds	Redshif	Redshift ^	Template	LinesRatioName	Conti.	. ^	Con	ContinuumA	VelocityE	Velocity
0	0.87826	0.0002542	0.9952371	ssp_1.4Gyr_z	tpl_NEW-Sbc-extended_TF_catalog	0.3		-1	1.307702733e-17	230	450
1	0.81802	0.0003250	4.8010451	t5e9_12gyr_z	tpl_NEW-Sbc-extended_TF_catalog	0.6		-1	4.520180513e-17	370	450
2	3.32257	0.0024472	5.7055066	ssp_290Myr	tpl_COMBINE-ave-Lya-abs-AND-Sc	0.9		-1	0	10	450
3	3.27784	0.0021489	3.0255436	ssp_290Myr	tpl_NEW-Im-extended-blue_TF_cata	0.9		-1	0	10	150
4	0.91659	0.0004208	2.2199397	cst_6gyr_z02	tpl_COMBINE-ave-BX-highblue-AN	0.8		-1	1.019394829e-16	370	450
-1	0.879										
-2	0										

The usage – Integration to a pipeline or standalone use

- Interaction with the input and output data : the python client
 - Generic one with a given data model for public version
 - We can provide one adapted to the datamodel used in a pipeline
 - Both in input and output
- Handles parallelization

DE MARSEILLE

LABORATOIRE D

Performances on simulated data

- Efforts from the PFS and Euclid Science Working Groups
- Within requirements so far but...
 - Not all instrumental effects included yet
 - Simulated continuum against simulated continuum templates
 (because building coherent observed templates over 500-18000 A is tough)

Others already said it, but early full E2E simulations are fundamental

Performances on simulated data

- Results on the flag 4 spectra : 19658 galaxy spectra
- Caveats
 - Variance in VIPERS spectra is `not perfectly' evaluated
 - There can be superposition of spectra
 - Flags (sometime strongly) depend on the personality/experience
 - Human measurement based on features not available
 2D spectrum
 Feature on the edge of spectrum

- Results on the flag 4 spectra : 19658 galaxy spectra
- Caveats
 - Variance in VIPERS spectra is `not perfectly' evaluated
 - There can be superposition of spectra
 - Flags (sometime strongly) depend on the personality/experience
 - Human measurement based on features not available
 2D spectrum
 Feature on the edge of spectrum

- Results on the flag 4 spectra : 19658 galaxy spectra
- Caveats
 - Variance in VIPERS spectra is `not perfectly' evaluated
 - Not a simulation, even with double human check, errors remain
 - Flags (sometime strongly) depend on the personality/experience
 - Human measurement based on features not available
 2D spectrum
 Feature on the edge of spectrum

LABORATOIRE

- 96.3% success with |dz/(1+z)| < 0.002 (300 km/s at z=1) CesA
- 0.4<z<0.53 galaxies represent 20% of sample but 35% of errors
 - Lack of adequate template ?

(Red+ templates were built during VVDS)

- Merit (measures confidence,)
 - Cutting merit >0.99 excludes 7.5% of the sample but 1/3 of errors
 - Dynamics to be refined

- Inprove reliability
- Validate object classifier

- Provide homogeneous measurements on public data available at
 - https://cesam.lam.fr/aspic
- First public release in 2022
- Open to collaborate on your favorite project

Next Marseille Cosmology Conference Edition

From galaxies to cosmology with deep spectroscopic surveys

A tribute to Olivier Le Fèvre

25-29 oct. 2021 Marseille (France

https://specsurveys2021.sciencesconf.org

