OBSERVATIONAL and QUANTITATIVE COSMOLOGY WITH THE IGM

> MATTEO VIEL SISSA TRIESTE

Azores PhD School - Lectures 1 and 2 Terceira 28/08/17

Euclid Flagship simulation

GOALS and OUTLINE

GOALS

- 1) provide a clear understanding of why the IGM can be used to do quantitative cosmology
- 2) provide you with the state-of-the-art in this field
- 3) highlight possible pathways to future developments

OUTLINE

- 1) Physics of the Intergalactic Medium
- 2) What can we learn from the use of different transmitted flux statitistics

TEST CASES: 3) WARM DARK MATTER

- 4) NEUTRINOS
- 5) LOW-z FOREST

BASICS

IGM: baryonic (gaseous) matter (not in collapsed objects) that lies
between galaxies

differently from galaxies:

does not "shine", tipically samples <u>overdensities delta = [-1,10]</u>, forms a network of filaments called the <u>"cosmic web"</u> with clustering pattern/topology that needs to be characterized usually <u>pixels</u> are used and not "objects"

CGM: circum galactic medium (is closer to galaxies) thereby possibly more affected by astrophysics

SOME REFERENCES

1) MODEL BUILDING:

Bi & Davidsen 1997, "Evolution of Structure in the Intergalactic Medium and the Nature of the Lyα Forest", ApJ, 479, 523

2) MORE ON OBSERVATIONS:

Rauch, 1998, "The Lyman-alpha forest in the spectra of QSOs", ARA&A, 32, 267

3) RECENT REVIEWS (include sims and recent data sets): Meiksin, 2009, "The Physics of the IGM", Progress Reports, 81, 1405

McQuinn, 2016, "The Evolution of the Intergalactic Medium", ARA&A, 54,313

BRIEF HISTORICAL OVERVIEW of the Lyman- α forest

Fig. 1.—A spectrogram illustrating the numerous absorption lines in 4C 05.34. The strong emission line in the center is La. The O vi emission lines and several airglow features are also indicated. The comparison spectrum is He + Ar + Ne.

LYNDS (ner page L73)

discrete clouds, reproduced most of the observations;

NETWORK OF FILAMENTS

N-body + Hydro simulations (Cen et al. 1994), semi-analytical models (Bi et al., 1993).

COSMOLOGICAL PROBES

More recent milestones

DATA: early 90s: advent of high res spectroscopy (UVES, Keck)

- [1998-2002] Croft, Weinberg+: first quantitative use of the Lyman-alpha forest for cosmology.
- [1998-2004] better understanding of physics of the IGM (Hui, Gnedin, Meiksin, White)
- [2004] Viel+: usage of UVES to complement Croft's work with better sims to cover the parameter space.
- [2005-06] SDSS-II results (McDonald, Seljak...): excellent synergy with CMB abd other probes demonstrated (constraints on inflation and neutrinos).
- [2007-now] systematic use of QSO spectra for DM nature at small scales
 (Viel+).
- [2013] BAO detected in the Lyman-alpha forest 3D correlation by BOSS (SDSS-III) from low resolution.

<u>**Dark matter evolution**</u>: linear theory of density perturbation + Jeans length $L_J \sim sqrt(T/\rho) + mildly$ non linear evolution

<u>Hydrodynamical processes</u>: mainly gas cooling cooling by adiabatic expansion of the universe heating of gaseous structures (reionization)

- photoionization by a uniform Ultraviolet Background
- Hydrostatic equilibrium of gas clouds

dynamical time = $1/sqrt(G \rho) \sim sound crossing time = size /gas sound speed$

Size of the cloud: > 100 kpc Temperature: ~ 10^4 K Mass in the cloud: ~ 10^9 M sun Neutral hydrogen fraction: 10^{-5}

In practice, since the process is mildly non linear you need numerical simulations to get convergence of the simulated flux at the percent level (observed)

Lyman- α forest (small clouds)

$$t_{\rm dyn} \equiv \frac{1}{\sqrt{G\rho}} \sim 1.0 \times 10^{15} \, \text{s} \left(\frac{n_{\rm H}}{1 \, {\rm cm}^{-3}}\right)^{-1/2} \times \left(\frac{1-Y}{0.76}\right)^{1/2} \left(\frac{f_g}{0.16}\right)^{1/2}$$

(L) $(\mu)^{1/2}$

For overdense absorbers typically t $_{dyn} \sim t_{sc}$ sets a jeans length

 $P \sim c_s^2 \rho$ $c_s^2 \rho / L \sim G \rho^2 L$

$$t_{\rm sc} \equiv \frac{L}{c_s} \sim 2.0 \times 10^{15} \, {\rm s} \left(\frac{L}{1 \, {\rm kpc}}\right) T_4^{-1/2} \left(\frac{\mu}{0.59}\right)$$

 $dP/dr = -G\rho M/r^2$

$$L_{\rm J} \equiv \frac{c_s}{\sqrt{G\rho}} \sim 0.52 \text{ kpc } n_{\rm H}^{-1/2} T_4^{1/2} \left(\frac{f_g}{0.16}\right)^{1/2}$$

If t _{sc} >> t _{dyn} then the cloud is Jeans unstable and either fragments or if v >> c_s shocks to the virial temperature If t _{dyn} >> t _{sc} the cloud will expand or evaporates and equilbrium will be restored

in a time t $_{\rm sc}$

I.

Simple scaling arguments (Schaye 2001, ApJ, 559, 507)

Dark matter evolution and baryon evolution –I

linear theory of density perturbation + Jeans length $L_J \sim sqrt(T/\rho)$ + mildly non linear evolution

$$x_b \equiv \frac{1}{H_0} \left[\frac{2\gamma k T_m}{3\mu m_p \Omega (1+z)} \right]^{1/2}$$

Jeans length: scale at which gravitational forces and pressure forces are equal

$$\begin{split} \delta_0(x) &\equiv \frac{1}{4\pi x_b^2} \int \frac{\delta_{\rm DM}(x_1)}{|x - x_1|} \, e^{-|x - x_1|/x_b} dx_1 \\ \delta_0(k) &\equiv \frac{\delta_{\rm DM}(k)}{1 + x_b^2 \, k^2} \,, \end{split}$$

Density contrast in real and Fourier space

$$n(x) = n_0 \exp\left[\delta_0(x) - \frac{\langle \delta_0^2 \rangle}{2}\right]$$
 Non lines

Ion linear evolution lognormal model

Bi & Davidsen 1997, ApJ, 479, 523

Dark matter evolution and baryon evolution – II

Bi & Davidsen 1997, ApJ, 479, 523

Dark matter evolution and baryon evolution – III

Hui & Gnedin 1998, MNRAS, 296, 44

LINEAR THEORY OF DENSITY FLUCTUATIONS

 $\Delta \boldsymbol{x}(\boldsymbol{q}, z) = D_{+}(z) [\nabla_{\boldsymbol{q}} \psi_{\text{IGM}}(\boldsymbol{q}, z) - \nabla_{\boldsymbol{q}} \phi_{\text{DM}}(\boldsymbol{q})]$ $\Delta \boldsymbol{x}(\boldsymbol{k}, z) = D_{+}(z) [W_{\text{IGM}} - 1] i \boldsymbol{k} \phi_{\text{DM}}(\boldsymbol{k}).$

IGM – TZA

Viel et al. 2002

Ionization state – I

Photoionization equilibrium UV background by QSO and galaxies

$$J(\nu) = J_{21}(\nu_0/\nu)^m \times 10^{-21} \text{erg s}^{-1} \text{Hz}^{-1} \text{cm}^{-2} \text{sr}^{-1} \qquad \Gamma_{-12} = 4 \times J_{-21}$$

$$\Gamma_{\gamma t}(z) = \int_{r_t}^{\infty} \frac{4\pi J(\nu, z)\sigma_t(\nu)}{h\nu} \, d\nu \qquad \text{Photoionization rates}$$

$$Ht + Ht = 1$$

$$+$$

$$\frac{dHt}{dt} = \alpha_{Htt} n_e H_{Ht} - H_{-1}(\Gamma_{\gamma Ht} + \Gamma_{eHt} n_e)$$
Recombination rates
$$Photoionization rate \qquad \text{Collisional ionization rate}$$

Theuns et al., 1998, MNRAS, 301, 478

Viel, Matarrese, Mo et al. 2002, MNRAS, 329, 848

Thermal state

Tight power-law relation is set by the equilibrium between photo-heating and adiabatic expansion

$$\epsilon_{\gamma i}(z) = \int_{\nu_i}^{\infty} \frac{4\pi J(\nu, z)\sigma_i(\nu)(h\nu - h\nu_i)}{h\nu} \,\mathrm{d}\nu$$

$$\mathcal{H} = (\mathrm{H\,I\,}\epsilon_{\gamma\mathrm{H\,I\,}} + \mathrm{He\,I\,}\epsilon_{\gamma\mathrm{He\,I}} + \mathrm{He\,II\,}\epsilon_{\gamma\mathrm{He\,II}})/n_{\mathrm{H}}$$

 $T = T_0 (1+\delta)^{\gamma-1}$

Theuns et al., 1998, MNRAS, 301, 478

Semi-analytical models for the Ly-a forest

(Bi 1993, Bi & Davidsen 1997, Hui & Gnedin 1998, Matarrese & Mohayaee 2002)

$$k_{J}^{-1}(z) \equiv H_{0}^{-1} \begin{bmatrix} \frac{2\gamma k_{B}T_{m}(z)}{3\mu m_{p}\Omega_{0m}(1+z)} \end{bmatrix}^{1/2} \text{ Jeans length}$$

$$\delta_{0}^{IGM}(\mathbf{k}, z) = \frac{\delta_{0}^{D^{M}}(\mathbf{k}, z)}{1 + k^{2}/k_{J}^{2}(z)} \equiv W_{IGM}(k, z)D_{+}(z)\delta_{0}^{DM}(\mathbf{k}) \quad \text{Filtering of linear DM} \quad \text{Linear fields: density, velocity}$$

$$\mathbf{v}^{IGM}(\mathbf{k}, z) = E_{+}(z)\frac{\delta \mathbf{k}}{k^{2}}W_{IGM}(k, z)\delta_{0}^{DM}(\mathbf{k}) \quad \text{Peculiar velocity} \quad \text{Non linear fields:}$$

$$n_{IGM}(\mathbf{x}, z) = \overline{n}_{IGM}(z)\exp\left[\delta_{0}^{IGM}(\mathbf{x}, z) - \frac{\langle (\delta_{0}^{IGM})^{2} \rangle D_{+}^{2}(z)}{2}\right] \text{ Non linear density field} \quad \text{Temperature}$$

$$T(\mathbf{x}, z) = \overline{T_{0}(z)}(1 + \delta^{IGM}(\mathbf{x}, z)) \frac{\gamma(z)}{2}^{-1} \quad \text{Equation-of-state'} \quad \text{Neutral hydrogen ionization equilibrium equation}$$

$$\tau(u) = \frac{\sigma_{0,\alpha}}{H(z)} \int_{-\infty}^{\infty} dy n_{HI}(y) \mathcal{V} \left[u - y - v_{II}^{IGM}(y), b(y)\right] \text{ Optical depth}$$

$$\overline{T(u)} = \frac{\sigma_{0,\alpha}}{H(z)} \int_{-\infty}^{\infty} dy n_{HI}(y) \mathcal{V} \left[u - y - v_{II}^{IGM}(y), b(y)\right] \text{ Optical depth}}$$

MV, Matarrese S., Mo HJ., Haehnelt M., Theuns T., 2002a, MNRAS, 329, 848

The transmitted flux

Now my observable is the transmitted flux on a pixel-by-pixel basis, i.e. a continouos field, the key assumption is that it still contains some info on the underlying density field (gas+dark matter), however, the relation is non linear and in principle difficult to model

Statistical properties of the flux can be investigated like

1) <F>: important for measuring Omega baryons or UV amplitude

2) **Flux PDF** (1 point function, i.e. histogram of F values): important for...?

3) **1D flux power:** important for cosmological parameters and small scale power

4) **3D flux power:** important for BAO detection

5) Flux bispectrum: important for non gaussianities

Note that also corresponding real space quantities could be used

HOW TO GO FROM FLUX TO DENSITY ?

Several methods have been used to recover the linear matter power spectrum From the flux power:

- "Analytical" Inversion Nusser et al. (99), Pichon et al. (01), Zaroubi et al. (05) "OLD"
- The effective bias method pioneered by Croft (98,99,02) and co-workers "OLD"
- Modelling of the flux power by McDonald, Seljak and co-workers (04,05,06) NEW Jena,Tytler et al. (05,06) Viel+13,+11 - Irsic+17

In practice it is now state-of-the-art to rely on hydro sims. (Bolton+17, Lukic+16 etc.)

Hydro simulations set-up is tailored to the **scientific problem** under investigation and to the **data set** used.

The data sets

SDSS vs UVES

VS

Bolton+17, Sherwood simulation suite (PRACE: 15 CPU Mhrs)

$$P_{1D}(k) = \frac{1}{2\pi} \int_k^\infty P_{3D}(x) x dx$$

High redshift (and small scales): possibly closer to linear behaviour

END OF IGM BASICS

GOAL: the primordial dark matter power spectrum from the observed flux spectrum (filaments)

$P_{FLUX}(k,z) = bias^2(k,z) \times P_{MATTER}(k,z)$

THE EFFECTIVE BIAS METHOD - I

- 1- Convert flux to density pixels: F=exp(-A $\rho \beta$) Gaussianization (Weinberg 1992)
- 2- Measure $P_{1D}(k)$ and convert to $P_{3D}(k)$ by differentiation to obtain shape
- 3- Calibrate $P_{3D}(k)$ amplitude with (many) simulations of the flux power

THE EFFECTIVE BIAS METHOD - II

Croft et al. 2002

THE EFFECTIVE BIAS METHOD - III

THE EFFECTIVE BIAS METHOD - IV

Critical assessment of the effective bias method by Gnedin & Hamilton (02)

$$P_{F}(k) = b^{2}[k,P(k)]P(k)$$
Systematic errors
$$P_{L}^{obs}(k) = P_{L}^{fct}(k)Q_{\Omega}Q_{T}Q_{T},$$
where
$$Q_{\Omega} \approx \left(\frac{2.4}{1+1.4f_{3}}\right)^{2},$$

$$Q_{T} = 20000 \text{ K/T}_{0},$$

$$Q_{\tau} = (0.349/\tau)^{0.75},$$

$$\Delta P_{F}(k) = \sum_{k'} b^{2}(k,k')\Delta P_{L}(k').$$

RESULTS: Croft et al. 02 method works (missing physics, bias function, smoothing by peculiar velocities) but this is mainly due to the fact that statistical errors are large and comparable to systematic errors

THE EFFECTIVE BIAS METHOD and WMAP

Verde et al. (03) Seljak, McDonald & Makarov (03)

THE EFFECTIVE BIAS METHOD, WMAP + a QSO sample (LUQAS)

Viel, Haehnelt & Springel (04)

-New sample at <z>=2.125

-Full grid of hydro simulations with GADGET

THE EFFECTIVE BIAS METHOD - SUMMARY

Viel, Haehnelt & Springel (04)

Many uncertainties which contribute more or less equally (statistical error seems not to be an issue!)

ERRORS	CONTRIB. to R.M.S FLUC		
Statistical error	4%		
Systematic errors	~ 15 %		
τ_{eff} (z=2.125)=0.17 ± 0.02	8 %		
τ_{eff} (z=2.72) = 0.305 ± 0.030	7 %		
$\gamma = 1.3 \pm 0.3$	4 %		
$T_0 = 15000 \pm 10000 \text{ K}$	3 %		
Method	5 %		
Numerical simulations	8 %		
Further uncertainties	5 %		

FORWARD MODELLING OF THE FLUX POWER

The interpretation: full grid of simulations

SDSS power analysed by forward modelling motivated by the huge amount of data with small statistical errors

CMB: Spergel et al. (05) Gal

+

Cosmological parameters + e.g. bias

MODELLING FLUX POWER – II: Method

We vary 34 parameters, 3 of which are fixed for our primary result but varied for consistency checks. We give a summary before defining each in detail. In parentheses we give the actual number of parameters for each type:

Parameters $\Delta_L^2(k_p, z_p)$, $n_{\text{eff}}(k_p, z_p)$, and $\alpha_{\text{eff}}(k_p, z_p)$ (3).— Standard linear power spectrum amplitude, slope, and curvature on the scale of the Ly α forest, assuming a typical Λ CDM-like universe. Parameter $\alpha_{\text{eff}}(k_p, z_p)$ is fixed to -0.23 for the main result.

Parameters g' and s' (2).—Modifiers of the evolution of the amplitude and slope with redshift, to test for deviations from the expectation for Λ CDM. Fixed for main result.

Parameters $\overline{F}(z_p)$ and ν_F (2).—Mean transmitted flux normalization and redshift evolution.

Parameters $T_{i=1...3}$ and $\tilde{\gamma}_{i=1...3}$ (6).—Temperature-density relation parameters, including redshift evolution.

Parameter x_{rei} (1).—Degree of Jeans smoothing, related to the redshift and temperature of reionization.

Parameters f_{Sim} and ν_{Sim} (2).—Normalization and redshift – evolution of the Sim-Ly α cross-correlation term.

Parameters $\epsilon_{n,i=1...11}$ (11).—Freedom in the noise amplitude in the data in each SDSS redshift bin.

Parameter α_R (1).—Freedom in the resolution for the SDSS data.

Parameter A_{damp} (1).—Normalization of the power contributed by high-density systems.

Parameters a_{NOSN} and a_{NOMETAL} (2).—Admixture of corrections from the NOSN and NOMETAL hydrodynamic simulations.

Parameters $A_{\rm UV}$ and $\nu_{\rm UV}$ (2).—Normalization and redshift evolution of the correction for fluctuations in the ionizing background.

Parameter x_{extrap} (1).—Freedom in the extrapolation of our small simulation results to low k.

Tens of thousands of models Monte Carlo Markov Chains

- Cosmology - Cosmology - Mean flux

- Reionization

 $- T = T_0 (1 + \delta) \gamma^{-1}$

- Metals
- Noise
- Resolution
- Damped Systems
- Physics
- UV background
- Small scales

MODELLING FLUX POWER – III: Likelihood Analysis

TABLE 2 Effect of Modifications of the Fitting Procedure on the Inferred Linear Power Spectrum and Its Errors

McDonald et al. 05

16-1	A 2		. 16	A 70
variant	$\Delta_{\tilde{L}}$	n _{eff}	χ	$\Delta \chi^{2}$
Standard fit	0.452 ± 0.072	-2.321 ± 0.069	185.6	0.0
No hydrodynamic corrections	0.377 ± 0.041	-2.284 ± 0.046	191.8	4.0
Fixed extrapolation	0.456 ± 0.071	$-2,303 \pm 0.058$	185.9	0.2
Fixed to FULL	0.453 ± 0.070	-2.322 ± 0.063	185.4	0.0
Fixed to NOSN	0.435 ± 0.059	-2.262 ± 0.054	187.9	1.9
Fixed to NOMETAL	0.394 ± 0.048	-2.374 ± 0.055	188,3	1.3
No $L = 40 h^{-1}$ Mpc simulations	0.439 ± 0.065	-2.328 ± 0.069	190.0	0.1
$\Omega_m = 0.4$, HS transfer function	0.454 ± 0.074	-2.307 ± 0.067	187.6	0.1
No damping wings (DWs)	0.366 ± 0.042	-2.398 ± 0.050	188.7	1.8
DW power known to 10%	0.452 ± 0.071	-2.321 ± 0.067	185.6	0.0
Randomly located DW	0.435 ± 0.070	-2.333 ± 0.067	186.8	0.1
No UVBG fluctuations	0.446 ± 0.067	-2.338 ± 0.049	187.4	0.2
Strong attenuation UVBG	0.452 ± 0.072	-2.320 ± 0.067	185.1	0.0
Galaxy-based UVBG	0.452 ± 0.069	-2.346 ± 0.059	187.4	0.3
F errors times 2	0.452 ± 0.077	-2.321 ± 0.071	184.9	0.0
\bar{F} errors times $\frac{1}{2}$	0.455 ± 0.062	-2.320 ± 0.066	188.2	0.0
Fix F to best	0.452 ± 0.030	-2.321 ± 0.048	185.6	0.0
TDR errors times 2	0.530 ± 0.106	-2.299 ± 0.078	180.4	0.8
TDR errors times $\frac{1}{2}$	0.455 ± 0.055	-2.305 ± 0.065	192.0	0.0
Schaye TDR	0.524 ± 0.059	-2.307 ± 0.072	195.4	1.4
HIRES PF errors times 2	0.493 ± 0.086	-2.276 ± 0.081	153.8	0.9
HIRES P_F errors times $\frac{1}{2}$	0.442 ± 0.070	-2.335 ± 0.053	292.1	0.1
SDSS P_F errors times $\frac{1}{2}$	0.468 ± 0.053	-2.301 ± 0.033	584.3	0.1
Fix nuisance parameters to best	0.452 ± 0.010	-2.321 ± 0.012	185.6	0.0
Include Croft/Kim, no background subtraction	0.355 ± 0.051	-2.366 ± 0.054	313.3	2.9
Include Croft & Kim	0.408 ± 0.064	-2.364 ± 0.063	215.9	0.4
Drop bad Croft z	0.411 ± 0.064	-2.366 ± 0.064	206,1	0.3
Add Kim only	0.466 ± 0.082	-2.318 ± 0.076	178.7	0.1
Standard with HIRES background subtraction	0.503 ± 0.094	-2.305 ± 0.081	161.9	0.6

NOTE.—Here $z_p = 3.0$ and $k_p = 0.009$ s km⁻¹. ^a The meaning of each variant is explained in § 3.5. ^b Standard χ^2 for the fit, for ~161 degrees of freedom, plus 20–24 for Kim et al. (2004a), plus 44–65 for Croft et al. (2002) (see details in § 3.6).

^e The $\Delta \chi^2$ between the variant best-fit amplitude and slope and the standard best-fit values (essentially unrelated to χ^2 for the fit).

Results Lyman- α only with full grid: amplitude and slope

$$\Delta_L^2(k, z) \simeq \left[\frac{D(z)}{D(z_p)}\right]^2 \Delta_L^2(k_p, z_p) \qquad \times \left[\frac{k}{k_\star(z)}\right]^{3+n_{\text{eff}}(k_p, z_p)+(1/2)\alpha_{\text{eff}}(k_p, z_p) \ln[k/k_\star(z)]}$$

 χ^2 likelihood code distributed with COSMOMC

McDonald et al. 05

Croft et al. 98,0240% uncertaintyCroft et al. 0228% uncertaintyViel et al. 0429% uncertaintyMcDonald et al. 0514% uncertainty

Redshift z=3 and k=0.009 s/km corresponding to 7 comoving Mpc/h

FORWARD MODELLING OF THE FLUX POWER:

A DIFFERENT APPROACH

Flux Derivatives

The flux power spectrum is a smooth function of k and z

McDonald et al. 05: fine grid of (calibrated) HPM (quick) simulations Viel & Haehnelt 06: interpolate sparse grid of full hydrodynamical (slow) simulations

Both methods have drawbacks and advantages:

- 1- McDonald et al. 05 better sample the parameter space with poor sims
- 2- Viel & Haehnelt 06 rely on hydro simulations, but probably error bars are underestimated
- 3- Palanque-Delabrouille+15,+16 (new BOSS data) uses method 2

but even resolution and/or box size effects if you want to save CPU time

Fitting SDSS data with GADGET-2 this is SDSS Ly- α only !!

 γ^{A} (z=3)

FLUX DERIVATIVES method of lecture 2

M sterile neutrino > 10 KeV 95 % C.L.

SDSS data only

$$\sigma_8 = 0.91 \pm 0.07$$

n = 0.97 ± 0.04

0.2