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1929: Universal Expansion

The original Hubble diagram (Hubble 1929):
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All distant galaxies are found to recede from us.
Hubble's Law: v=Hyd — The Universe expands!
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1916: Einstein's Theory of
General Relativity
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Relativistic Cosmology

Friedmann
equation

Einstein field
equation
Ansatz:
Friedmann-Robertson-Walker
metric
Assumption:

homogeneity & isotropy

Differential equation for
scale factor a(t).

Friedmann (1922):
static solution is unstable
— GR predicts universal
expansion as well as the
Hubble law, where
o=
d
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Relativistic Big Bang Cosmology
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Relativistic Cosmology

FRW metric:
ds?* = = d? + A (O)[dy* + =7 (Ve + sin® d¢?))
siny k= +1
2(x) =14 X k=10

sinh y k= —1

Friedmann equation:
_ 1
2

H(z)=Ho | Y Q1+ 2" 4 (1 + 2)°

‘ a
HZQ,I—I—Z:—O
a a

Equation of state:

2
P = W, C [
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Relativistic Cosmology
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Which of the solutions of the Friedmann equation
corresponds to reality?

3G

Or in other words:

What is the stress-energy tensor of the universe?

For each mass/energy component i, what is Q.,, w, (and what is H;)?
A
\

Density parameter — Equation of state parameter



Which of the solutions of the Friedmann equation
corresponds to reality?

3G

Or in other words:

What is the stress-energy tensor of the universe?

For each mass/energy component i, what is Q.,, w, (and what is H;)?
A
\

Density parameter — Equation of state parameter

How can these be measured?

* Geometry

* Expansion history

 Clustering, evolution and dynamics of density perturbations



Precision Cosmology
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Surprise: Accelerated Expansion

* Good evidence from SNla that a period of decelerated expansion was
followed 'recently' by a period of acceleration.
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Surprise: Accelerated Expansion

* Good evidence from SNla that a period of decelerated expansion was
_followed ‘recently’ by a period of acceleration.
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Surprise: Accelerated Expansion

Good evidence from SNla that a period of decelerated expansion was
followed 'recently' by a period of acceleration.
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Surprise: Accelerated Expansion

* Good evidence from SNla that a period of decelerated expansion was
followed 'recently' by a period of acceleration.

* The source of the acceleration is entirely unknown.
Most explanations so far proposed require new physics.

Dark energy:
- Cosmological constant =-1
- Quintessence -1<w(z) <0
- Phantom energy w(z) < -1

Modification of gravity:
- f(R)
- Non-minimal couplings
- Braneworld scenarios (DGP, Cardassian, ...)

Modification of Copernican Principle:

- Inhomegeneous models without DE can reproduce past light-cone
observations of FRW models with DE (LTB, void models, ...)

- Backreaction (averaging and evolution do not commute)



Surprise: Accelerated Expansion

Good evidence from SNla that a period of decelerated expansion was
followed 'recently' by a period of acceleration.

The source of the acceleration is entirely unknown.
Most explanations so far proposed require new physics.

Dark energy:
- Cosmological constant w = -1
- Quintessence -1<w(z)<0 74% Dark Energy
- Phantom energy w(z) < -1

Modification of gravity:
- f(R)
- Non-minimal couplings
- Braneworld scenarios (DGP, Cardassian, ...)

4% Atoms

Modification of Copernican Principle:

- Inhomegeneous models without DE can reproduce past light-cone
observations of FRW models with DE (LTB, void models, ...)

- Backreaction (averaging and evolution do not commute)



Surprise: Accelerated Expansion
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Accelerated Expansion

- Intense interest in the expansion history.



Accelerated Expansion

- Intense interest in the expansion history.

a(t) A

Goal is to measure or
reconstruct the unknown
function a(t).
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Accelerated Expansion

- Intense interest in the expansion history.

Hubble constant
a(t)A HO - da/dt / a




Accelerated Expansion

- Intense interest in the expansion history.

a(t) A

Aa::;:::;i
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A measurement of H(z) allows the reconstruction of a(t).
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- Intense interest in the expansion history.
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A measurement of H(z) allows the reconstruction of a(t).



Accelerated Expansion

- Intense interest in the expansion history.
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A measurement of H(z) allows the reconstruction of a(t).



Accelerated Expansion

- |Intense interest in the expansion history.
Best current methods of measuring H(z): Perimutter & Schmidt (2003)
- SNia e
- Weak lensing . A
- Baryon Acoustic Oscillations (BAO) A
- Redshift Space Distortions (RSD)
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Su pernovae Ia. SEP Uniqn2.1 I—IIubeeldiagralm:
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* Current datasets give ~850 Hamuy et l. (1996
Sne lato z ~ 1.5 and constrain Boer e s e
w to within ~10 %. e
Unionz.1 SN la
- : winon
*  Many new experiments running b Systematis

or planned but going to high
redshifts is hard (no Sne la at
Z > 2). Secondary parameters?
Evolution?




Weak Lensing, Cosmic Shear

* Gravitational lensing by large-
scale structure distorts the
images of background galaxies.
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Weak Lensing, Cosmic Shear

* Gravitational lensing by large-
scale structure distorts the
images of background galaxies.




Weak Lensing, Cosmic Shear

Gravitational lensing by large-
scale structure distorts the
images of background galaxies.

The distortion can be separated
into two terms: convergence
(change of size) and shear
(change of shape).

....................
....................
....................
--------------------
--------------------
....................
--------------------
oooooooooooooooooooo
....................
....................
....................
....................
--------------------
--------------------
--------------------
....................
llllllllllllllllllll
....................
....................

.....

......
IIIIIII

-----

™ - - .
...............



Weak Lensing, Cosmic Shear

Gravitational lensing by large-
scale structure distorts the
images of background galaxies.

The distortion can be separated
into two terms: convergence
(change of size) and shear
(change of shape).

Intrinsic ellipticities of galaxies
are much larger than shear and
act as 'shape noise' — need to
combine many galaxies to
obtain a signal.

True Backgrownd

%i""ﬁ

® f_’}"
0 ?
0 ﬁﬂ'

Trug Background

Lensed Image




Weak Lensing, Cosmic Shear

Gravitational lensing by large-
scale structure distorts the
images of background galaxies.

The distortion can be separated
into two terms: convergence
(change of size) and shear
(change of shape).

Intrinsic ellipticities of galaxies
are much larger than shear and
act as 'shape noise' — need to
combine many galaxies to
obtain a signal.

Use ellipticities of large samples
of galaxies to estimate shear
correlation function (or power
spectrum).
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Weak Lensing, Cosmic Shear

9HGO2, X dX(Xa x)° P5(1/x, x)
4ct 0 X.s G(X)z

P.(l, xs) =

* The shear power spectrum is sensitive to:
- Matter density Qy, 1.9l
- Amplitude of DM power spectrum og

- Growth of structure — DE, break de- 1

generacy between DE and modified gravity o,
- Source distances — DE 0.8l
- Expansion history — DE

El Tomography: with A
*_ i Tomography: GG-only |
[ 2D Lensing: GG-only
-+ WMAP7 best-fit
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Weak Lensing, Cosmic Shear

P.(l, xs) =

9HG, X (X

—x)* Ps(1/x, x)

dx

4ty X;

a(x)*

* The shear power spectrum is sensitive to:

* Redshift information helps — tomography 0.8

Matter density Q, 19l

Amplitude of DM power spectrum oy

Growth of structure — DE, break de- 1}

generacy between DE and modified gravity o,

Source distances — DE 0.8}

Expansion history — DE
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Weak Lensing, Cosmic Shear

9H 2 [ . (xs —x)* Ps(1/x, x
Pull, ) = 0 [ gy e 2 B X)
4ct  J, X a(x)

* The shear power spectrum is sensitive to:
- Matter density Qy, 1.9l
- Amplitude of DM power spectrum og

- Growth of structure — DE, break de- 1

generacy between DE and modified gravity o,
- Source distances — DE 0.8t
- Expansion history — DE

|:| Tomography: with A

*_ i Tomography: GG-only |
[ 2D Lensing: GG-only
-+ WMAP7 best-fit

« Redshift information helps — tomography |
* This is hard! Need: 0.4k
- huge imaging surveys )
- in multiple bands (for photo-z) 0 o. °f |
- excellent control of PSF in at least one 3ot W
band mEIPL T,

- shape measurements
- deal with intrinsic galaxy alignments




Baryon Acoustic Oscillations

Origin of acoustic peaks in CMB and galaxy power spectra (from D. Eisenstein and W. Hu)

Consider initial point-like density
perturbation in the early Universe.
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Baryon Acoustic Oscillations

Origin of acoustic peaks in CMB and galaxy power spectra (from D. Eisenstein and W. Hu)

* Consider initial point-like density
perturbation in the early Universe.
* As it evolves:

- Neutrinos free-stream

- CDM attracts more CDM

- Hot photon-gas fluid has huge
pressure — wave travels
outward at speed of sound
(acoustic wave)
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Baryon Acoustic Oscillations

Origin of acoustic peaks in CMB and galaxy power spectra (from D. Eisenstein and W. Hu)

Consider initial point-like density
perturbation in the early Universe.
As it evolves:

- Neutrinos free-stream
- CDM attracts more CDM
- Hot photon-gas fluid has huge
pressure — wave travels
outward at speed of sound
(acoustic wave)
While photons dominate over CDM
(z < z¢q) they smooth out the CDM

distribution — power is suppressed
on scales of < ¢;*t,; — break in

CDM power spectrum.

Mass Profile of Perturbation
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| Dark Matter, Gas, Photon, 0.23 Myrs :
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Baryon Acoustic Oscillations

Origin of acoustic peaks in CMB and galaxy power spectra (from D. Eisenstein and W. Hu)

Consider initial point-like density
perturbation in the early Universe. —————
As it evolves: [ Dark Matter, Gas, Photon, 0.38 Myrs |

- Neutrinos free-stream
- CDM attracts more CDM
- Hot photon-gas fluid has huge
pressure — wave travels
outward at speed of sound
(acoustic wave)
While photons dominate over CDM

(z < z¢q) they smooth out the CDM
distribution — power is suppressed
on scales of < ¢;*t,; — break in S S S R
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dramatically — baryon perturbation
is frozen in.



Baryon Acoustic Oscillations

Origin of acoustic peaks in CMB and galaxy power spectra (from D. Eisenstein and W. Hu)

Consider initial point-like density
perturbation in the early Universe.
As it evolves:

- Neutrinos free-stream
- CDM attracts more CDM
- Hot photon-gas fluid has huge
pressure — wave travels
outward at speed of sound
(acoustic wave)
While photons dominate over CDM
(z < z¢q) they smooth out the CDM

300

__Dar‘k Matter, Gas, Photon, 1.45 Myrs
z2=478 ]

200

100

Mass Profile of Perturbation

distribution — power is suppressed 0

on scales of < ¢;*t,; — break in R R ISR e
4] 50 100 150 200

CDM power spectrum. Radius (Mpc)

At z~1000 p,e- combine — photons

decouple from baryons — c_ drops

dramatically — baryon perturbation
is frozen in.

Photons free-stream and disperse.



Baryon Acoustic Oscillations

Origin of acoustic peaks in CMB and galaxy power spectra (from D. Eisenstein and W. Hu)

Consider initial point-like density
perturbation in the early Universe. —————
As it evolves: 1000 ™ hark Matter, Gas, Photon, 23.4 Myrs

- Neutrinos free-stream AN
- CDM attracts more CDM
- Hot photon-gas fluid has huge
pressure — wave travels
outward at speed of sound
(acoustic wave)
While photons dominate over CDM
(z < z¢q) they smooth out the CDM
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0 50 100 150 200
CDM power spectrum. Radius (Mpc)

At z~1000 p,e- combine — photons

decouple from baryons — c_ drops
dramatically — baryon perturbation
is frozen in.

Photons free-stream and disperse.

Baryons and CDM react to each
other's gravitational pull and
assimilate.



Baryon Acoustic Oscillations

Origin of acoustic peaks in CMB and galaxy power spectra (from D. Eisenstein and W. Hu)

Consider initial point-like density
perturbation in the early Universe. —————
As it evolves: - Dark Matter, Gas, Photon, 474.5 Myrs -

- Neutrinos free-stream N 27107
- CDM attracts more CDM
- Hot photon-gas fluid has huge
pressure — wave travels
outward at speed of sound
(acoustic wave)
While photons dominate over CDM
(z < z¢q) they smooth out the CDM

)]
-]
=
=

.
o
o
o

i
o
]
o

Mass Profile of Perturbation

distribution — power is suppressed 0

on scales of < ¢;*t,; — break in s
CDM power spectrum. Radius (Mpc)

At z~1000 p,e- combine — photons

decouple from baryons — c_ drops

dramatically — baryon perturbation * An overdensity of both baryons and CDM

is frozen in. remains at the location of the initial density
Photons free-stream and disperse. perturbation as well as at a distance of
Baryons and CDM react to each Cs trecomp — these act as seeds for galaxy
other's gravitational pull and formation — a preferred scale is imprinted

assimilate. on the galaxy distribution.



Baryon Acoustic Oscillations

Origin of acoustic peaks in CMB and galaxy power spectra (from D. Eisenstein and W. Hu)

« Butit's a wave! So far only GI‘E V]t}f’
considered a single crest. .




Baryon Acoustic Oscillations

Origin of acoustic peaks in CMB and galaxy power spectra (from D. Eisenstein and W. Hu)

But it's a wave! So far only
considered a single crest.

And there are many perturbations.
So far only considered a single one.

. Potential .

Hill
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Baryon Acoustic Oscillations

Origin of acoustic peaks in CMB and galaxy power spectra (from D. Eisenstein and W. Hu)

« Butit's a wave! So far only
considered a single crest.

* And there are many perturbations.
So far only considered a single one.

* |n fact, there's a spectrum of
perturbations with some power
spectrum.




Baryon Acoustic Oscillations

Origin of acoustic peaks in CMB and galaxy power spectra (from D. Eisenstein and W. Hu)

But it's a wave! So far only
considered a single crest.

And there are many perturbations.

So far only considered a single one.

In fact, there's a spectrum of
perturbations with some power
spectrum.

All modes that are multiples of
Cs*trecomp @re enhanced.
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Baryon Acoustic Oscillations

Geometrical large-angle standard
ruler test.

The ruler itself is based on clean,
linear-regime physics at the
recombination epoch which is very
sensitively probed by the CMB and
well understood.

Provides Dx(z), H(z), Dy(z) (Alcock-
Pacinski test).

Not sensitive to galaxy evolution,
dust, etc.

Does not require precise
measurements. Basic galaxy
photometry and spectroscopy is
enough,

Works best at 1 <z < 3.
Get RSD for free.

Requires huge samples, i.e. Surveys:
volumes of > 1 Gpc?3

Needs spectroscopy.
Works bestat 1 <z < 3.
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BAO
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power spectrum
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BAO Current Results

BOSS, Anderson et al. (2014)
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BAO
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BAO Current Results

[

Iy

110

105

100 |

95 |
90 |

85 [

' CMASS

DR11 post—recon

}K TML

1300

CMASS DR11 (z =0.57)
isotropic BAO £

anisotropic BAO

ePlanck {ACDM)

1400 14

1350

Dy(zp) (""dﬂd/ Te)/Mpc

-1.3
-1.5
-1.7
—1.9

BOSS, Anderson et al. (2014)

@]

o

=
I T TTI

PLANCK+SN

| PLANCK+CMASS+LOWZ

- PLANCK+BAO
PLANCK+BAO+SN

~0.06 —0.04 —0.02 0.00
QK

0.02




Redshift Space Distortions

r, (h L Mpc)

Samushia et al. (2013)

Measured redshifts include not only
the Hubble flow but also peculiar
velocities:
- on small scales: finger-of-God
effect in collapsed structures
- on large scales: infall into high-
density regions and outflow from
low-density regions (Kaiser effect)

Creates anisotropy between the LOS
and transverse correlation functions.

Anisotropy constrains og*dInG/dIna,
i.e. the growth of structure.

Breaks the degeneracy between DE
and modified gravity models with the
same H(z).

Again need big redshift surveys, but
get them 'for free' with BAO surveys.



RSD Current Results
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RSD Current Results
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Accelerated Expansion

- Intense interest in the expansion history.
Best current methods of measuring H(z):

- SNla
- Weak lensing

- Baryon Acoustic Oscillations (BAQO)
- Redshift Space Distortions (RSD)

These methods are essentially geometric in nature and/or
probe the dynamics of localised density perturbations.

A measurement of the global dynamics has never been
attempted. This would offer a direct, entirely model-
independent route towards H(z).
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A photon emitted by some object at comoving distance ¥ at time t.,
and observed at t,,; suffers a redshift of:
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Observing the Expansion

A photon emitted by some object at comoving distance ¥ at time t.,
and observed at t,,; suffers a redshift of:
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A photon emitted by some object at comoving distance ¥ at time t.,
and observed at t,,; suffers a redshift of:
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Evolving redshifts
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Evolving redshifts

The evolution of an
object's redshift with
time contains the entire
expansion history.
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Evolving redshifts

Big Bang
The evolution of an o L
object's redshift with
time contains the entire
expansion history. ol
a(t,ys) 3
1+2(t ,.) = s 8¢ L
o) = )
3]
*t
o
| e
, . el R L P B B B
< 'X -10 0 10 20 30

-1
tobs — bo (h‘!ﬂ Gyr)




Evolving redshifts

Big Bang

To use z(t,,,) to

reconstruct the ex-
pansion history we need
to observe for Gyrs!
Alternative: measure

6
1

dz
Citobs

4
|

z|x=cnnst(tc hs)

dz/dt = change of redshift '
as a fuction of time.
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What is dz/dt,?
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Cosmic Dynamics

The de- or acceleration of the universal expansion rate between epoch z and
today causes a small drift in the observed redshift as a function of time:

[ ¢ = (1+2)H,~H(z) }

Two remarkable features:
* For this equation to be valid you only need:

- gravity can be described by a metric theory
- homogeneity and isotropy

* The redshift drift does not deduce the evolution of the expansion by
mapping out our present-day past light-cone but directly measures the
evolution by comparing our past light-cones at different times.




Cosmic Dynamics

The de- or acceleration of the universal expansion rate between epoch z and
today causes a small drift in the observed redshift as a function of time:

[ ¢ = (1+2)H,~H(z) }

Measuring z(z):

Allows us to watch, in real time, the
universe changing its expansion rate.

Most direct and model-independent route
to the expansion history and acceleration.

First non-geometric measurement of the
global FRW metric.

Tests whether the geometry and
dynamics of spacetime are determined by
the 'same’ stress-energy tensor.

Independent confirmation and
quantification of accelerated expansion.

H(z) determination in a redshift range
iInaccessible to other methods.
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Size of the signal

If At = 10 years then:
* Az ~ 107
AN = A\ AZ
~10°A
~ 10 pixel
~1 nmon CCD
* Av = ¢ Az/(1+2)
~ 6 cm/s

— Tiny signal!

BUT: HARPS has
already achieved a long-
term accuracy of ~1 m/s
with ~10 cm/s accuracy
over a few hours.

dz/dty (10710 hq yr™")

—1

Signature of A >0
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1
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How can we measure the redshift drift?

The precision with which a velocity shift of a spectrum can be determined
depends on:

 The number and sharpness of available spectral features.

 The S/N at which they are recorded, i.e.

* the brightness of the source(s),
* the size of the telescope,

* the total system efficiency,
 the exposure time.



Measuring dz/dt in the IGM

H absorption
&

‘Metal’ absorption lines
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The Lyman a Forest

vQSOs are the brightest
sources at any redshift.

v QSOs exist over all
redshifts, 0 <z < 6.

v Each line of sight to a
background QSO shows
~107 Lya lines.

v The Lya forest is an
excellent tracer of the
Hubble flow (small peculiar
motions).

X Line widths are 15-50 km/s.

(Metal line widths are of
order 1 km/s but reside in
deeper potential wells).

Photon counts

redshift z
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(00453-243 z=2.661

A=h . (1+2)

Aya=1215.67 A
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Effect of peculiar motion

| . ' J T T T T T T T
dz/dt in absence

/ of peculiar motion

&

* The effect of peculiar
motion should be
compared to the size of
the error on an individual
Z measurement.

0

* Peculiar motion is only
problematic when using a
small number of high-
precision measurements.

—0.5
T

-1

dz,,/dt,,. (1070 g yr™ ")

* No problem when using
QSO absorption lines,
even if the absorbing gas
lies in a deep potential
well. Zobs

Liske et al. (2008)

— The Lya forest traces the Hubble flow!



Observing dz/dt in the Lyo Forest

Simulation of the Lya forest at z ~ 3:
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Observing dz/dt in the Lyo Forest

Simulation of the Lya forest at z ~ 3:
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Observing dz/dt in the Lyo Forest

Simulation of the Lya forest at z ~ 3:
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How can we measure the redshift drift?

The precision with which a velocity shift of a spectrum can be determined
depends on:

 The number and sharpness of available spectral features.

 The S/N at which they are recorded, i.e.

* the brightness of the source(s),
* the size of the telescope,

* the total system efficiency,
 the exposure time.
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Can we collect enough photons?

Can we collect enough
photons to achieve the
required radial velocity
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Simulation Results
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Constraints on Cosmology

= 4000 hours over 22 years
will unequivocally prove the
existence of dark energy
without assuming flatness,
using any other cosmological
constraints or making any
other astrophysical
assumption whatsoever.

= Provides independent
confirmation of SNla results,
using a different method and
a complementary redshift =
range.
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Liske et al. (2008)




Constraints on Cosmology

= 4000 hours over 22 years
will unequivocally prove the
existence of dark energy
without assuming-fHatress,
using any other cosmological
constraints or making any
other astrophysical
assumption whatsoever.

= Provides independent
confirmation of SNIla results,
using a different method and
a complementary redshift
range.
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Constraints on Cosmology

= 4000 hours over 22 years
will unequivocally prove the
existence of dark energy

without assuming-Hatress, |‘n:;'
eenstraints or making any

other astrophysical

assumption whatsoever. &G

= Provides independent
confirmation of SNIla results,
using a different method and
a complementary redshift
range.
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Constraints on non-standard models

Assuming
flatness and a

L)
fixed H, the < S
hashed regions 5

show the allowed -
dz/dt ranges after
the models have
been constrained

W
=
o
by SNIa, CMB §
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and BAO data
(Davis et al. 2007).
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Constraints on non-standard models

G ___________ el — — — o
. Al TF”\HH ‘H’-HH-‘
Assuming : I, Wi,
f!atness and a . = [ Quintessence: | i H I G Chaplygin gas: i
flxed H the "I— ClJ i ﬂx Wo Wa ‘ Hillllll B B o
- [ 078 -092 -0.47 i 0.76 —0.04
hashed regions > [ —o068 -120 +1.22 | I — 069 +0.14 ||
show the allowed + _ L = 074 -148 +1.48 i 0.77 —0.00
dz/dt ranges after « | [ 971 -84 -1z SRR o : :
the models have £ | H\H Iy
been constrained . [/ HH|||| |
by SNla, CMB & | | “'L“”“m 0
and BAO data = | MUJH. Il 5 |
(Davis et al. 2007). i i | 21!
Ty [ N, [
o F MP Cardassian: -q
i | 0y q n o
022 172 4020 O
[ 0.32 0.34 —1.2; — I
_ b o024 046 -1.00 3
R | 3
1 2 3 4

Quartin & Amendola (2009)



Redshift Drift Summary

The evolution of the redshift of cosmological sources as a function of time is a
direct, dynamical signal of the de/acceleration of the Universe's expansion.

The E-ELT will offer us the first opportunity to measure the redshift drift (over a
timescale of ~20 yrs), resulting in a unigue measurement of the expansion history:

Allows us to watch, in real time, the universe changing its expansion rate.

Most direct and model-independent route to the expansion history and
acceleration.

First non-geometric measurement of the global FRW metric.

Requires no priors and is independent of other cosmological experiments.
Independent confirmation and quantification of accelerated expansion.
H(z) determination in a cosmic epoch inaccessible to other methods.

Does not involve or rely on any astrophysics (such as the [unknown]
evolution of the sources used).

Keeps on giving: signal grows linearly with time — very cost effective.




E-ELT

Extremely Exciting Long Term
science




Is it affordable?

4000 h is an impressive time request for any telescope. However:

* The total time is distributable (to some extent)

4000 h /20 yr = 20 nights per year

Comparable to past investment
VLT/UVES has invested ~3000 hours on QSO spectroscopy.

Synergy with other ELTs

Assuming appropriate instrumentation, data from all ELTs could be
combined.

Immediate science with the same data
- Cosmological variation of fundamental constants
- Tcms(2)
- Primordial deuterium abundance
- Metallicity evolution of the low-density IGM
- Tomography of the IGM



Wavelength Calibration

Desired characteristic ThAr |, cell LFC
From fundamental physics v v (74
Individually unresolved Mostly v (74
Resolved from each other X X v
Uniformly spaced X X (74
Cover optical range v X ?
Uniform intensity X X ?
Long-term stability X ? (V4
Maintain object S/N v X (74
Exchangeable v v 4
Easy to use v v ?
Reasonably low cost v v (74

Adapted from Murphy et al. (2007)



Laser Frequency Comb

* Optical or NIR laser producing a train of monochromatic femtosecond light pulses.

* Pulse repetition rate is controlled by an atomic clock.

* Produces a spectrum of evenly spaced &-functions (frequency comb) whose
absolute wavelengths are known to a precision limited only by the atomic clock.

Train of femtosecond light pulses

— - —» -

f R —
> J

(( I
)

VoS nVr‘|‘VCE

Frequency comb
Zero offset and line

spacing known with
absolute precision
limited by atomic clock.

—1

by Thomas Udem (MPQ)




Laser Frequency Comb
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Photon-limited
wavelength calibration
precision is ~0.5 cm/s.

Optimal pulse repetition
rate is 10-20 GHz.

Simulation Results
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LFC on HARPS @ ESO 3.6 m
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Lo Curto et al. (2012)



Residuals of calibration curve (m/s)

LFC on HARPS @ ESO 3.6 m
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