Cosmology with DLA absorption systems

Paolo Molaro INAF- OAT

В

outline

- What are the DLAs?
- The neutral gas content of the Universe
- Chemical abundances, dust, chemical patterns.
- DLA and First stars

- Primordial Deuterium
- Molecules gas in DLAs: H₂, HD, CO
- T_{CMB} (Z)

~250 DLA

- M_{DLA} span from 10⁶ to 10^{11} , with average $10^8 M_{\odot}$
- L_{DLA} span from the L_{LBG} down for 8 mag
- SFR_{DLA} from 0.1 to 10 M_{\odot} yr⁻¹ (possibly lower)

Deuterium

Adams (1976), first suggested primordial D could be measured in QSO absorption lines

D isotope is blueshifted respect to HI by -83 km s⁻¹

Songaila et al (1994), Carswell et al (1994), Rugers & Hogan (1996)

(in agreement with ⁷Li and ⁴He!)

Low D/H ~ 10⁻⁵

Tytler et al (1996), Burles & Tytler (1998) Molaro et al (1999) ,Kirkman et al 2000

QSO 1937 1009 z_{abs}=3.572

Tytler et al (1996)

Riemer-Sorensen et al (2017)

orange Tytler et al (1996) model

Burles &Tytler (1998) Q1009+2956 z_{abs} =2.504 LogN(I)=17.4 10⁵D/H = 4.0 ± 0.7

Zavarygin et al (2017)

- S/N ~147 (from 60)
- =>Ly 14 small contamination in the Ly- α

 $10^{5}D/H=3.16 \pm 0.6$

- in LLS hydrogen is ionized => large error
- in a DLA the D line is hidden in the HI line

D in DLAs

QSO 2206-199 z_{abs} =2.0, LogN(I)=20.5 D/H=1.65±0.25 10⁻⁵ Pettini & Bowen (2001) O'Meara et al 2001 HS 0105+1619 z_{abs} 2.53 Sub-DLA Log(HI)=19.4 [M/H]= -1.8

in the most pristine gas

2003 Kirkman et al					
2004 Crighton et al	PKS 1937-1009 R	iemer			
Sorensen et al 2015					
2006 O'Meara et al	QSO J1558-0031	Cooke et al			
2014					
2008 Pettini et al	Q0913+072	Cooke et al			
2014					
2011 Fumagalli et al					
2012 Noterdaeme e	t al				
2012 Pettini & Cooke	e J1419+0829	Cooke et al			
2014					

D/H=2.04±0.61 10-5

Fumagalli O'Meara Prochaska (2011)

LogN(HI)=17.95+/-0.05

Precision measurements

J1358+6522

z_{abs} = 3.067, LogN(HI)=20.5, [Fe/H] = -2.84 simple system: two components b=8-9 km/s 13 resolved DI Ly lines in the lyman serie! Cooke et al (2014)

 $10^{-5} \text{ D/H}=2.58\pm0.07$

dispersion?

Cooke et al 2014

10 measurements before 2014

sub-sample of the best 5 systems (4 DLA +1 subDLA) with several resolved DI lines i.e. less contamination by Ly- α forest

Updated Precision sample

All systems after 2014: 10 systems:

5 DLA systems Cooke et al 2014
3 re-determination: Zavarygin et al (2017); Riemer-Sorensen et al (2015, 2017)
2 new determinations: Cooke et al 2016, Balashev et al 2017

 $10^{5}(D/H) = 2.569 \pm 0.027$ ~ 1% error!!!

no dispersion (the two not plotted have large errors)

- no dependence on HI
- no dependence on metallicity

D depletion

Local measurement D/H and chemical evolution

no dust in the DLA (when measured)
 small depletion is expected for [Fe/H]~ -2

D the "baryometer" of choice

- D ~ **not** sensitive to expansion rate
- strong sensitivity to eta.
- BB only astronomical source (spallation minor), stars destroy D

Fields et al (2018)

⁴He extragalactic HII regions (Peimpert et al 2017) ⁷Li: Halo stars D: DLAs

$10^{5}(D/H) = 2.569 \pm 0.027$

D Nucleosynthesis

leading	reactions:

Reaction	Rate Symbol	$\sigma_{D/H} \cdot 10^5$
$p(n, \gamma)^2 H$	R_1	±0.002
$d(p,\gamma)^3He$	R_2	±0.062
$d(d,n)^3He$	R_3	±0.020
$d(d, p)^3H$	R_4	±0.0013

Theoretical S(E) have uncertainties ~ 1% error. D/H can shift by 4.5% (Marcucci et al 2016)

S(E) factor D(p,g)³He

CMB & SBBN

The odd acoustic peaks in the power spectrum are enhanced over the even as we increase the baryon density.

100 Ω b,oh² = 2.226 ± 0.023 also at ~1%

 $\eta_{10} = 273.9 \,\Omega_{\mathrm{b},0} \,h^2$ (for Yp, CMBT=2.7258 K, Steigman 2006,)

 $100 \ \Omega_{b,o}h^2 = 2.260 \pm 0.018 \pm 0.029 \ \text{exp S(E)}$

(with D/H=25.69 ±0.27: $100\Omega_b \Omega_{b,o}h^2 \sim 2.245 \pm 0.015 \pm 0.029$ (preliminary!)

perfect agreement!

no need for new physics beyond the SM. $N_{\rm eff} = 3.046 (1 + \Delta N_{\nu}/3)$.

theoretical S(E) (Marcucci et al 2016): lower D_p (~ 4.5%), lower eta, and lower Ω

100 Ωb,oh² = 2.156 ± 0.017 ± 0.011 new S factor Cooke et al (2016) 100 Ωb,oh² = 2.226 ± 0.023 Planck

small tension (~ 2.3 sigma or more)

with $10^{5}D/H=2.569 \pm 0.027 =>100 \Omega \text{ b, oh}^{2} = 2.140 \pm 0.015 \pm 0.011$ (preliminary!)

Gustavino (2017) ${}^{2}H(p,\gamma){}^{3}He$ ${}^{3}He(\alpha,\gamma){}^{7}Be$ ${}^{2}H(\alpha,\gamma){}^{6}Li$

LUNA experiment Gran Sasso

⁷Li predicted by SBBN is OK, no nuclear fix to the Li problem

SBBN enhanced

Molecular hydrogen

 H_2 is stable at low temperatures, but difficult to predict: formes on dust grains, photodissociated by hv > 14 ev,

In the Milky Way. Lyman and Werner bands (~ 1000 A) first detected in a rocket experiment (Carruthers 1967), then Copernicus and FUSE.

Fuse FUV Lyman Band lines

 $f = 2N(H_2)/[2N(H_2) + N(H_I)]^2$

Electronic level diagram

from Field et al (1966)

Ground state is X. It has 30 vibrational levels, each with an infinite number of rotational states.

The next two singlet levels are B C, connected to ground X by allowed electric-dipole transitions (analogs of HI Ly-alpha). Lyman and Werner bands start at 1108 Å and 1040 Å, and are spread to the HI Lyman edge at 911.7 Å

Extragalactic

Levshakov & Vershalovich 1985 on a spectrum of PKS 0528-250 by Morton et al 1980 taken at the 3.9 Anglo-Australian Telescope

Confirmation: Foltz et al 1998, Srianand & Petijean 1998, Gee & Betchold 1999

H2 MOLECULE IN THE DAMPED SYSTEM at z = 2.8112

H₂ lines fall within the Lyman forest

H₂ z~ 2

courtesy Regina Jorgenson

B 0642-5038

Bagdonaite (2013)

zabs~2.66

H₂ and DLA metallicity

40 measurements

H₂ is found preferentially in high metallicity systems
 less abundant in high redshift DLA

H₂ and dust

 $f(H_2)$ correlates with dust depletion

 $f = 2N(H_2)/[2N(H_2) + N(H_I)]$

H₂ formation needs dust, and dust needs metals

H2 & LogN(HI)

dependence on the LogN(HI)?

Noterdaeme et al (2015) study of the few log H(I) ~ 22 $\,$

At Log H(I)~22 the incidence is higher but the molecular level ($f(H_2)$ ~ 10⁻⁴ -10⁻²) remains low.

No evidence for dense molecular clouds

Surveys of H_2

- 2003: Ledoux et al. on 33 DLAs, detection rate: 13 – 20%. Preselection: dusty systems
- 2008: Noterdaeme et al., on 77
 DLA,detection rate: 10 18%.
 Preselected
- 2013 Jorgenson ~100 z ≥ 2.2 DLA detection rate 1-5%. Unbiased, blind survey.
- 2014 Balashev et al. High logN(H₂) candidates from SDSS (z>2.3) spectra (logN(H₂) > 19.5), 100 candidates found, 8 studied 8 systems (100% success)
- 2015 Noterdaeme, detection rate <10%. Preselection of strong CI lines from SDSS (or 2175 A bump)

 H_2 in DLA: ~ 40

GRBs: 4 (Prochaska et al 2009, Kruhler et al 2013, Friis et al 2015, D'Elia et al 2014)

fraction 1-5% Jogerson et al (2013)

physical state of the gas:

Balashev et al 2017

From the population levels J

like the Milky Way
 T_{exc} decrease with N(H₂)

The largest H₂ column density

J0843+0221, zabs=2.786

logN(H)=21.82, $logN(H_2)=21.21$,

Balashev et al 2017

Observational evidences:

- The incidence is 1-5% (possibly higher at high logNH(I)
- $f(H_2)$ in DLA is much lower than in the Galaxy
- H_2 correlates with metallicity and dust and no H_2 is detected for [Fe/H] < -2
- No dense H₂ cloud detected
- $T_{exc} \sim 10^{2}$, $n(HI) \sim 50$ cm⁻³

- H₂ are small cloudlets with low filling factor

electron-vibro-rotational transitions have different dependence from the reduced H_2 mass.

$$\lambda_{\rm obs} = \lambda_{\rm rest} \, (1 + z_{\rm abs}) (1 + K_{\rm i} \, \Delta \mu / \mu)$$

$$K_{i} = -\frac{\mu_{n}}{\lambda_{i}} \frac{\mathrm{d}\lambda_{i}}{\mathrm{d}\mu_{n}} = \frac{1}{E_{\mathrm{e}} - E_{\mathrm{g}}} \left(-\frac{\mu_{\mathrm{n}} \mathrm{d}E_{\mathrm{e}}}{\mathrm{d}\mu_{\mathrm{n}}} + \frac{\mu_{\mathrm{n}} \mathrm{d}E_{\mathrm{g}}}{\mathrm{d}\mu_{\mathrm{n}}} \right)$$

 $m_p = 938 \text{ Mev} = (862_{\text{QCD}} + 74_q + 2_{\text{QED}}) \text{ Mev} \propto \Lambda_{\text{QCD}} \implies \text{strong forces}$

 $m_e = 0.5$ Mev \propto the vacuum expectation value of the Higgs field => The weak scale (223 N

$\mu = strong/weak$

Deuterate Hydrogen

8 detections:

Q1232+082 Varshalovich et al 2001 J1439+1117 Srianand et al 2008 J2123-0500 Tumlison et al 2010 Q0812+32 Balashev et al 2010 Q1331+170 Balashev et al 2010 J1237+064 Noterdaeme et al 2010 J0000+0048 Noterdaeme et al 2017 J0843+0221 Balashev et al 2017

HD/2H₂ ~ 10-80 ppm

- greater than the MW ~ 1 ppm (Snow et al 2008),
- ~ (DH)p = 25 ppm

puzzling behaviour. HD chemistry: chemical fractionation and charge exchange processes: $D^+ + H_2 => HD + H^+$ (Litz 2015)

Carbon Monoxide

CO second molecule more abundant in the universe. Elusive for more than a quarter of century Discovery: (Srianand et al 2008)

X_{CO} conversion factor: CO-H₂ is not known

T_{exc}

provides a good measure of the T_{CMB} energy between J and (J-1): $E_J = 5.54 J K$

 $T_{\rm r} = 2.725(1 + z)$

Excitation of atomic or molecular lines with transition energies ~ K T_{CMB} (z) can be excited by T_{CMB}

CI* CII*

- The population of fine-structure levels of the ground state of C I* or C II* depends mainly on (Bachall Wolfe 1968):
 - Collisional excitation
 - CMB radiation

McKellar 1941

A. McKellar, *Molecular Lines from the Lowest States of Diatomic Molecules Composed of Atoms Probably Present in Interstellar Space*, in *Publications of the Dominion Astrophysical Observatory (Victoria, BC)*, vol. 7, 1941, pp. 251–272.

of the intensity factor i are, respectively, 2 and 4. Thus from (3) we find, for the region of space where the CN absorption takes place, the "rotational" temperature,

$$T = 2^{\circ}3K.$$

If the estimate of the intensity of R(0)/R(1) were off by 100 per cent, this value of the "rotational" temperature would not be changed greatly, R(0)/R(1) = 2.5 giving T = 3.4K and R(0)/R(1) = 10 giving T = 1.8K. On the basis of the above temperature

CN Molecules:

- CN, used in the Galaxy (Meyer &Jura 1985, Ritchey et al 2010.
- However, CN not yet detected in external galaxies

Cui et al (2005)

H₂ provides simultaneous determination of **local density**, kinetic temperature and UV radiation, thus allowing to estimate the level of collisional excitation of CI* and CII*

$$T_{CMB} = 10 \pm 4 \text{ K}$$

 $T_{CMB}(z) = 9 \text{ K}$

QSO 1331+170 z_{abs}=1.77

Т_{СМВ}=12.1(+1.7,-3.2) К Т_{СМВ}(**z**) = 10.5 К

$$\begin{array}{|c|c|c|} T_{CMB} = 7.2 \pm 0.8 \text{ K} \\ T(z) = 7.566 \text{ K} \end{array}$$

CO

10

Noterdaeme et al 2011

 $T_{\text{CMB}}(z) = (2.726 \pm 0.001) \times (1 + z)^{1-\beta} \text{ K}$

Constraint to non adiabatic expansion (.e. decaying D

Data set	β		
S-Z	$+0.040 \pm 0.079$		
S-Z + atom. carbon	$+0.029 \pm 0.053$		
S-Z + CO	-0.012 ± 0.029		
S-Z + atom. carbon + CO	-0.007 ± 0.027		

CO theory

1

Sobolev et al 2015

relative populations of CO levels function of: $T_{CMB}, T_{Kin}, n, f(H_2)$

$$W_{ij}^{\text{tot}}(T_{\text{CMB}}, T_{\text{Kin}}, n, f) = \left\{ \frac{f}{2} \left[\alpha_{para}(T_{\text{Kin}}) W_{ij}^{H_{2para}}(T_{\text{Kin}}) + (1 - \alpha_{para}(T_{\text{Kin}})) W_{ij}^{H_{2ortho}}(T_{\text{Kin}}) \right] + (1 - f) W_{ij}^{H}(T_{\text{Kin}}) + 0.083 \cdot W_{ij}^{He}(T_{\text{Kin}}) \right\} \frac{n}{1.083 - f/2} + W_{ij}^{CMB}(T_{\text{CMB}})$$

collisions with H₂, H

for T_{kin} =100 K

precision of a fraction of degree difficult to obtain at high z

supersolar metallicity

Noterdaeme et al 2017

	Species	Dipole	Date	T_{rot}
		moment	of the	(K)
Muller et al 2013		(Debye)	observations	
	C_2H	0.77	2011	5.3 ± 0.1
	SO	1.54	2009	5.4 ± 1.4
	HNCO	1.58	2011	9.8 ± 1.5
PKS 1830-211	HOC^+	2.77	2011	5.1 ± 0.4
	H ¹³ CN	2.99	2011	5.1 ± 0.2
	HC ¹⁵ N	2.99	2011	4.1 ± 0.4
7.080 ATCA obs	HNC	3.05	2011	4.6 ± 0.2 ⁺
Z~0.09, AICA 005	HN ¹³ C	3.05	2011	4.8 ± 0.3
	SiO	3.10	2011	6.0 ± 0.2
	c-C ₃ H ₂ -o	3.43	2009	5.6 ± 0.4
	c-C ₃ H ₂ -p	3.43	2009	5.4 ± 1.0
	HC ₃ N	3.73	2009	6.3 ± 1.3
	$H^{13}CO^+$	3.90	2011	5.3 ± 0.1

The most precise measure ever

Sunyaev-Zeldovich (S-Z) effect: change in the spectral energy of the CMB towards clusters owing to inverse Compton scattering of the CMB photons by hot intra cluster gas. Useful for z<0.6 (Fabbri et al 1978, Luzzi et al 2009)

t-SZ from Planck

Hurier et al 2014

also Saro et al 2014 using the South Pole Telescope

Decaying Dark Energy Ma 2008; Jetzer et al 2011,2012

summary:

DLA useful for:

account of the neutral gas in the universe
precise chemistry of 90% (up to z~ 5) of the universe
universal chemical evolution
smoking gun of the first stars
nucleosynthesis of elements: nitrogen, carbon
measure D_p and the baryonic component at few % level
probe the variability of alpha and m_e/m_p
measure T_{CMB}(z)

Thank You and special thanks to: Elsa, Miguel Catarina Miguel Carlos et al

Thank You and special thanks to: Elsa, Miguel Catarina Manuel Carlos et al