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How would you describe a wave?	
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Wave: propagation of information (a perturbation) in space and time	



Wave in a supporting medium: material does not need to move from 
one point of the space to the other to propagate the information	
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Asteroseismology How 
does it work?	



One mode  one piece of information	



  Average information on propagation 
cavity	



  With several modes one can hope to 
get localized information	
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Asteroseismology: Across the HR diagram	


Kurtz 2010 adapted from Aerts et al. 2010 	
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Origin 	


	

  Intrinsically stable	
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   Acoustic waves	


	

 	

p modes	



Nature 	


	

   Internal Gravity waves	


	

 	

g modes	



Kurtz 2010 adapted from Aerts et al. 2010 	



Asteroseismology: Classification	
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Hydrodynamics	





Hydrodynamics	



Assume that the gas can be treated as a continuum;  Thermodynamic properties	


well defined at each position r	



Let ϕ be a scalar property of the gas.	



r0	



r1	



dr	



ϕ	
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Hydrodynamics	



Assume that the gas can be treated as a continuum;  Thermodynamic properties	


well defined at each position r	



Let ϕ be a scalar property of the gas.	


Two ways to look at time evolution of ϕ:	



1.   At fixed position => Eulerian description	


2.   Following the motion => Lagrangian description	



r0	



r1	



dr	



ϕ	
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€ 

Dφ
Dt

=
∂φ
∂t

+∇φ⋅
D r 
dt

     =
∂φ
∂t

+
 v ⋅ ∇φ



Hydrodynamics	



Continuity equation : The mass variation within a given volume V must equal, with 
opposite sign, the mass crossing the surface S that encloses the volume V.	
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=> Acoustic waves require div v ≠ 0	



  

€ 

1
ρ

Dρ
Dt

= -∇⋅  v ⇔ 1
V

DV
Dt

=∇⋅  v 



Hydrodynamics	



  

€ 

Dρ
Dt

+ ρ ∇⋅  v = 0

Following the fluid - Lagrangian description	



€ 

ρ   

€ 

 v - density	

 - velocity	



Continuity equation	


(conservation of mass)	



Margarida S. Cunha  	


Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds	



Azores, 17-27 July, 2016	





Hydrodynamics	


Following the fluid - Lagrangian description	



€ 

ρ   

€ 

 v - density	

 - velocity	



Equation of motion: The change in linear momentum of an element of fluid must equal 
the force acting on it by its surroundings.  	



Continuity equation	


(conservation of mass)	
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δf  - is the Lagrangian perturbation	
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Adiabatic approximation	
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Equilibrium state: 	


   In static equilibrium	


   Spherically symmetric	



Small perturbations about equilibrium:	


f =f0+f’   - where f’ is the Eulerian perturbation	


δf  - is the Lagrangian perturbation	



Perturbations	



Adiabatic approximation	


Characteristic time scale for radiation:	


Sun as a whole: 107 years	


Solar convection zone:  103 years	
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! r 

"t

  

! 

"f = f ' +"! r .#f0
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€ 

∂ρ'
∂t

+  ∇⋅ (ρ0
 v ) = 0

ρ0
∂
 v 
∂t

= −∇ ʹ′ p − ρ0∇φ'− ʹ′ ρ ∇φ0

∇2φ'= 4πGρ'

∂δp
∂t

=
Γ1,0 p0

ρ0

∂δρ
∂t



Summary of perturbed equations	
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Linear adiabatic pulsation about a static, spherically symmetric equilibrium	



  

€ 

ρ'+ ∇⋅ (ρ0δ
 r ) = 0

ρ0
∂2δ
 r 

∂t 2 = −∇ ʹ′ p − ρ0∇φ'− ʹ′ ρ ∇φ0

∇2φ'= 4πGρ'

p'+δ r ⋅ ∇p0 =
Γ1,0 p0

ρ0
(ρ'+δ r ⋅ ∇ρ0)
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Summary of perturbed equations	
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Linear adiabatic pulsation about a static, spherically symmetric equilibrium	



Variables: 4 (ρ’, p’, ϕ’, δr)	



Equations: 4	
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Thus: system of equation is 
closed, so far as equilibrium 
quantities are known.	



  => can solve it to get solutions 
for the 4 variables.	



  

€ 

ρ'+ ∇⋅ (ρ0δ
 r ) = 0

ρ0
∂2δ
 r 

∂t 2 = −∇ ʹ′ p − ρ0∇φ'− ʹ′ ρ ∇φ0

∇2φ'= 4πGρ'

p'+δ r ⋅ ∇p0 =
Γ1,0 p0

ρ0
(ρ'+δ r ⋅ ∇ρ0)



Solutions on a sphere	





Solutions on a sphere	



Consider the spherical coordinates (r,θ,φ)	



Variables  (ρ’, p’, ϕ’, δr) are function of: r, θ, φ, t 	
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Solutions on a sphere	



Consider the spherical coordinates (r,θ,φ)	



Variables  (ρ’, p’, ϕ’, δr) are function of: r, θ, φ, t 	



The equations admit solutions of the type: 

  

€ 

p'(r,θ,ϕ,t) = Re[p'(r)Yl
m (θ,ϕ)e− iωt ]

ρ'(r,θ,ϕ,t) = Re[ρ'(r)Yl
m (θ,ϕ)e− iωt ]

φ'(r,θ,ϕ,t) = Re[φ'(r)Yl
m (θ,ϕ)e− iωt ]

δ
 r (r,θ,ϕ,t) = Re ξr (r)Yl

mˆ a r + ξh (r) ∂Yl
m

∂θ
ˆ a θ +

1
sinθ

∂Yl
m

∂φ
ˆ a φ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  e−iωt

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
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Solutions on a sphere	
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Solutions on a sphere	



Consider the spherical coordinates (r,θ,φ)	



Variables  (ρ’, p’, ϕ’, δr) are function of: r, θ, φ, t 	



The equations admit solutions of the type: 

  

€ 

p'(r,θ,ϕ,t) = Re[p'(r)Yl
m (θ,ϕ)e− iωt ]

ρ'(r,θ,ϕ,t) = Re[ρ'(r)Yl
m (θ,ϕ)e− iωt ]

φ'(r,θ,ϕ,t) = Re[φ'(r)Yl
m (θ,ϕ)e− iωt ]

δ
 r (r,θ,ϕ,t) = Re ξr (r)Yl

mˆ a r + ξh (r) ∂Yl
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∂θ
ˆ a θ +

1
sinθ
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ˆ a φ
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l – angular degree: the number of nodes on the sphere	



Spherical Harmonics Yl
m	



€ 

kh =
l(l +1)
R

m  - azimuthal order: |m| =number of nodes along the equator	


                                               => orientation on the sphere	



Note: |m| ≤ l	
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l – angular degree: the number of nodes on the sphere	



Spherical Harmonics Yl
m	



m  - azimuthal order: |m| =number of nodes along the equator	


                                               => orientation on the sphere	



Note: |m| ≤ l	
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€ 

kh =
l(l +1)
R

l=0	

 l=1	


m=0	



l=1	


m=-1	





l – angular degree: the number of nodes on the sphere	



Spherical Harmonics Yl
m	



m  - azimuthal order: |m| =number of nodes along the equator	


                                               => orientation on the sphere	



Note: |m| ≤ l	
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l=2	


m=0	



l=2	


m=2	



l=4	


m=2	



l=10	


m=5	



adapted from Aerts et al. 2010 	

 € 

kh =
l(l +1)
R



l – angular degree: the number of nodes on the sphere	



Spherical Harmonics Yl
m	



m  - azimuthal order: |m| =number of nodes along the equator	


                                               => orientation on the sphere	



Note: |m| ≤ l	
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l=2	


m=0	



l=2	


|m|=2	



l=4	


|m|=2	



l=10	


|m|=5	



adapted from Aerts et al. 2010 	

 € 

kh =
l(l +1)
R



Solutions on a sphere	



Consider the spherical coordinates (r,θ,φ)	



Variables  (ρ’, p’, ϕ’, δr) are function of: r, θ, φ, t 	



The equations admit solutions of the type: 

  

€ 

p'(r,θ,ϕ,t) = Re[p'(r)Yl
m (θ,ϕ)e− iωt ]

ρ'(r,θ,ϕ,t) = Re[ρ'(r)Yl
m (θ,ϕ)e− iωt ]

φ'(r,θ,ϕ,t) = Re[φ'(r)Yl
m (θ,ϕ)e− iωt ]

δ
 r (r,θ,ϕ,t) = Re ξr (r)Yl

mˆ a r + ξh (r) ∂Yl
m

∂θ
ˆ a θ +

1
sinθ

∂Yl
m

∂φ
ˆ a φ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  e−iωt

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

Margarida S. Cunha  	


Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds	



Azores, 17-27 July, 2016	





Solutions on a sphere	



Consider the spherical coordinates (r,θ,φ)	



Variables  (ρ’, p’, ϕ’, δr) are function of: r, θ, φ, t 	



The equations admit solutions of the type: 
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p'(r,θ,ϕ,t) = Re[p'(r)Yl
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ρ'(r,θ,ϕ,t) = Re[ρ'(r)Yl
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φ'(r,θ,ϕ,t) = Re[φ'(r)Yl
m (θ,ϕ)e− iωt ]

δ
 r (r,θ,ϕ,t) = Re ξr (r)Yl
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∂θ
ˆ a θ +

1
sinθ

∂Yl
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∂φ
ˆ a φ
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⎠ 
⎟ 

⎡ 

⎣ 
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Equations for the depth dependent amplitudes	



Substituting the solutions on the perturbed equations  
… and after significant algebra   

€ 

dξr
dr

= −
1

Γ1,0p0
dp0
dr

+
2
r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ξr +

Sl
2

ω 2 −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1

c0
2ρ0

p'+ l(l +1)
r2ω 2 φ'

dp'
dr

= ρ0(ω
2 − N0

2)ξr − ρ0
dφ '
dr

+
1

Γ1,0p0
dp0
dr

p'

1
r2

d
dr

r2 dφ '
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 4πG

p'
c0
2 +

ρ0N0
2

g0
ξr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

l(l +1)
r2

φ '
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Equations for the depth dependent amplitudes	



Substituting the solutions on the perturbed equations  
… and after significant algebra   

€ 

dξr
dr

= −
1

Γ1,0p0
dp0
dr

+
2
r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ξr +

Sl
2

ω 2 −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1

c0
2ρ0

p'+ l(l +1)
r2ω 2 φ'

dp'
dr

= ρ0(ω
2 − N0

2)ξr − ρ0
dφ '
dr

+
1

Γ1,0p0
dp0
dr

p'

1
r2

d
dr

r2 dφ '
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 4πG

p'
c0
2 +

ρ0N0
2

g0
ξr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

l(l +1)
r2

φ '
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4 variables: ξr, p’, ϕ’, dϕ’/dr	


4th order system	



Note1: all derivatives are total derivatives because the functions depend on r only	





Equations for the depth dependent amplitudes	



Substituting the solutions on the perturbed equations  
… and after significant algebra   

€ 

dξr
dr

= −
1

Γ1,0p0
dp0
dr

+
2
r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ξr +

Sl
2

ω 2 −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1

c0
2ρ0

p'+ l(l +1)
r2ω 2 φ'

dp'
dr

= ρ0(ω
2 − N0

2)ξr − ρ0
dφ '
dr

+
1

Γ1,0p0
dp0
dr

p'

1
r2

d
dr

r2 dφ '
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 4πG

p'
c0
2 +

ρ0N0
2

g0
ξr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

l(l +1)
r2

φ '
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4 variables: ξr, p’, ϕ’, dϕ’/dr	


4th order system	



Note2: equations depend on l but not on m, thus the eigenvalues ω cannot depend on m.	





Equations for the depth dependent amplitudes	



Substituting the solutions on the perturbed equations  
… and after significant algebra   

€ 

dξr
dr

= −
1

Γ1,0p0
dp0
dr

+
2
r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ξr +

Sl
2

ω 2 −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1

c0
2ρ0

p'+ l(l +1)
r2ω 2 φ'

dp'
dr

= ρ0(ω
2 − N0

2)ξr − ρ0
dφ '
dr

+
1

Γ1,0p0
dp0
dr

p'

1
r2

d
dr

r2 dφ '
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 4πG

p'
c0
2 +

ρ0N0
2

g0
ξr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

l(l +1)
r2

φ '
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4 variables: ξr, p’, ϕ’, dϕ’/dr	


4th order system	


This system, together with the boundary conditions, forms an eigenvalue problem	


=> Solving it provide the eigenvalues, ω, and eigenfunctions, ξr, p’, ϕ’, dϕ’/dr.	





Equations for the depth dependent amplitudes	



Substituting the solutions on the perturbed equations  
… and after significant algebra   

! 

d"r
dr

= #
1

$1,0p0
dp0
dr

+
2
r

% 

& 
' 

( 

) 
* "r +

Sl
2

+ 2 #1
% 

& 
' 

( 

) 
* 
1

c0
2,0

p'+ l(l +1)
r2+ 2 -'

dp'
dr

= ,0(+
2 # N0

2)"r # ,0
d- '
dr

+
1

$1,0p0
dp0
dr

p'

1
r2

d
dr

r2 d- '
dr

% 

& 
' 

( 

) 
* = 4.G

p'
c0
2 +

,0N0
2

g0
"r

% 

& 
' 

( 

) 
* +

l(l +1)
r2

- '
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Sl : Lamb frequency	



N0 : Buoyancy frequency 	


! 

Sl
2 =

l(l +1)
r2

c0
2

! 

N0
2 = g0

1
"1,0

d ln p0
dr

#
d ln$0
dr

% 

& 
' 

( 

) 
* 



Equations for the depth dependent amplitudes	



Substituting the solutions on the perturbed equations  
… and after significant algebra   

€ 

dξr
dr

= −
1

Γ1,0p0
dp0
dr

+
2
r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ξr +

Sl
2

ω 2 −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1

c0
2ρ0

p'+ l(l +1)
r2ω 2 φ'

dp'
dr

= ρ0(ω
2 − N0

2)ξr − ρ0
dφ '
dr

+
1

Γ1,0p0
dp0
dr

p'

1
r2

d
dr

r2 dφ '
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 4πG

p'
c0
2 +

ρ0N0
2

g0
ξr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

l(l +1)
r2

φ '
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Sl : Lamb frequency	



N0 : Buoyancy frequency 	


€ 

Sl
2 =

l(l +1)
r2

c0
2

€ 

N0
2 = g0

1
Γ1,0

d ln p0
dr

−
d lnρ0
dr

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

ρ2
*	

 ρ2	



ρ1	

ρ1
*	



N0
2 > 0 =>  ρ2

* > ρ2	



N0
2 <  0 =>  ρ2

* < ρ2  	





Equations for the depth dependent amplitudes	



Substituting the solutions on the perturbed equations  
… and after significant algebra   
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r
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dp0
dr
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1
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d
dr
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⎛ 
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Sl : Lamb frequency	



N0 : Buoyancy frequency 	


€ 

Sl
2 =

l(l +1)
r2

c0
2

€ 

N0
2 = g0

1
Γ1,0

d ln p0
dr

−
d lnρ0
dr

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

N0	



Sl	



adapted from Aerts et al. 2010 	





Boundary conditions	
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Fourth order system => 4 boundary conditions required	



  2 conditions at r=0	


  2 condition at r=R 	





Boundary conditions	
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Fourth order system => 4 boundary conditions required	



  2 conditions at r=0	


  2 condition at r=R 	



Conditions at r=0 	


Obtained by imposing regularity of the solutions at the centre	



Expand the equations near r=0 => find that	



p’~ O (rl)  ;  ϕ’ ~ O (rl) ;   ξr ~ O (rα)    with α=1 for l=0	


                                                                      α=l-1 for l>0	





Boundary conditions	



Margarida S. Cunha  	


Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds	



Azores, 17-27 July, 2016	



Fourth order system => 4 boundary conditions required	



  2 conditions at r=0	


  2 condition at r=R 	



Conditions at r=0 	


Obtained by imposing regularity of the solutions at the centre	



Expand the equations near r=0 => find that	



p’~ O (rl)  ;  ϕ’ ~ O (rl) ;   ξr ~ O (rα)    with α=1 for l=0	


                                                                      α=l-1 for l>0	


Consequently:	



€ 

dφ'
dr

=
l
r
φ '    ;   dp'

dr
=
l
r
p'    ;   dξr

dr
=
α
r
ξr



Boundary conditions	



Margarida S. Cunha  	


Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds	



Azores, 17-27 July, 2016	



Fourth order system => 4 boundary conditions required	



  2 conditions at r=0	


  2 condition at r=R 	



Conditions at r=0 	


Obtained by imposing regularity of the solutions at the centre	



Expand the equations near r=0 => find that	



p’~ O (rl)  ;  ϕ’ ~ O (rl) ;   ξr ~ O (rα)    with α=1 for l=0	


                                                                      α=l-1 for l>0	


Consequently:	



€ 

dφ'
dr

=
l
r
φ '    ;   dp'

dr
=
l
r
p'    ;   dξr

dr
=
α
r
ξr



Boundary conditions	



Margarida S. Cunha  	


Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds	



Azores, 17-27 July, 2016	
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  2 condition at r=R 	



Conditions at r=0	
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dφ'
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=
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=
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Conditions at r=R	


1st condition: matching ϕ’ and its derivative to solution for vacuum field 	



ϕ’ ~ O (r-l-1) 	





Boundary conditions	
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Fourth order system => 4 boundary conditions required	



  2 conditions at r=0	


  2 condition at r=R 	



Conditions at r=0	
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dφ'
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=
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φ '    ;   dp'
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=
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r
p'    

Conditions at r=R	


1st condition: matching ϕ’ and its derivative to solution for vacuum field 	



ϕ’ ~ O (r-l-1) 	
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dφ'
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= −
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Boundary conditions	
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Fourth order system => 4 boundary conditions required	



  2 conditions at r=0	


  2 condition at r=R 	



Conditions at r=0	



€ 

dφ'
dr

=
l
r
φ '    ;   dp'

dr
=
l
r
p'    

Conditions at r=R	


1st condition: matching ϕ’ and its derivative to solution for vacuum field 	



ϕ’ ~ O (r-l-1)	



2nd condition: depends on how the atmosphere is treated	



e.g. assuming free surface => δp’=0	


(But this is not adequate for a real star!)	


A better option is to make the numerical solutions match onto the analytical  
solutions for an isothermal atmosphere.	
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= −
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φ '      
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p'+ξr
dp0

dr
= 0    



Eigenvalue problem	
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centre	

 surface	

radius	



We reduced the problem to 1D	



Equations + boundary conditions 	


     => admit non-trivial solutions only for a discrete values of frequencies	



This set of frequencies is numbered by an integer n, the radial order   	





Eigenvalue problem	
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ω=ω(n,l,m)	



In summary: eigenfrequencies are discrete and characterized by three quantum numbers:    	



l – angular degree: the number of nodes on the sphere	



m  - azimuthal order: |m| =number of nodes along the equator	


                                               => orientation on the sphere	



n –radial order: |n| related to the number of nodes along the radial direction	





Eigenvalue problem	
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In summary: eigenfrequencies are discrete and characterized by three quantum numbers:    	


Adapted from Cunha et al 2007 (Bison data) 	



ω=ω(n,l,m)	





Equations for the depth dependent amplitudes	
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Equations depend on l, but not on m	


=>  In a spherically symmetric star, the eigenvalues are independent of m  	
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Equations depend on l, but not on m	


=>  In a spherically symmetric star, the eigenvalues are independent of m  	



ω=ω(n,l,m)	



Note: That is not the case if the star rotates or has a magnetic field, braking the symmetry.	





Waves in a spherically symmetric star	
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Waves in a spherically symmetric star	
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Waves in a spherically symmetric star	



ω=ω(n,l,m)	


One eigenmode          any combination	





Trapping of the oscillations	





The full solutions must be obtained numerically. However, under particular 
approximations, approximate analytical solutions can be derived. 	
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Trapping of oscillations 	





The full solutions must be obtained numerically. However, under particular 
approximations, approximate analytical solutions can be derived. 	



The Cowling approximation 	


Neglect the perturbation to the gravitational potential, ϕ’ 	


   => reduces the system to 2nd order	



Valid when l is large or |n| is large	
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The full solutions must be obtained numerically. However, under particular 
approximations, approximate analytical solutions can be derived. 	



The Cowling approximation 	


Neglect the perturbation to the gravitational potential, ϕ’ 	


   => reduces the system to 2nd order	



Valid when l is large or |n| is large	
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Trapping of oscillations 	



2 variables: ξr, p’	


2nd order system	





  Work under Cowling approximation	


   Assume that locally oscillations can be treated as in a plane-parallel layer 
under constant gravity (i.e., neglect derivatives of g and r)	
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Trapping of oscillations 	


Following Deubner and Gough 1984	



(See also, Gough 93)	





  Work under Cowling approximation	


   Assume that locally oscillations can be treated as in a plane-parallel layer 
under constant gravity (i.e., neglect derivatives of g and r)	



  Define the new variable:	
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€ 

X = c0
2ρ0

1/ 2∇⋅ δ
 r 

Trapping of oscillations 	


Following Deubner and Gough 1984	
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€ 

d2X
dr2

+ kr
2X = 0

In terms of the new variable the 2nd order system of equations can be reduced 
to a single  2nd order wave equation:	



Where kr is the local radial wavenember	



Trapping of oscillations 	



  Work under Cowling approximation	


   Assume that locally oscillations can be treated as in a plane-parallel layer 
under constant gravity (i.e., neglect derivatives of g and r)	



  Define the new variable:	



Following Deubner and Gough 1984	



  

€ 

X = c0
2ρ0

1/ 2∇⋅ δ
 r 



Trapping of oscillations 	



Recall the solutions of the wave equation with constant k	
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€ 

d2y
dx 2

+ k 2y = 0



Trapping of oscillations 	



Recall the solutions of the wave equation with constant k	
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€ 

d2y
dx 2

+ k 2y = 0

General solution is:	



where A and B are complex constants  	



€ 

y = Aeikx + Be−ikx



Trapping of oscillations 	



Recall the solutions of the wave equation with constant k	
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€ 

d2y
dx 2

+ k 2y = 0

General solution is:	



where A and B are complex constants  	



€ 

y = Aeikx + Be−ikx

   k2 > 0   =>   k is real  ;  Re{y}=acoskx+bsinkx	



                    => oscillatory behaviour	



   k2 < 0   =>  k = i |k|  ;  Re{y}= ae-|k|x+be|k|x	



                             => exponential grow or decay	
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€ 

d2X
dr2

+ kr
2X = 0

Trapping of oscillations 	



In the star kr is not constant!	
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Trapping of oscillations 	
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Trapping of oscillations 	
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Trapping of oscillations 	



from Aerts et al. 2010 	
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+ kr
2X = 0In the star kr is not constant!	
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Trapping of oscillations 	



N0	



Sl	



adapted from Aerts et al. 2010 	



from Aerts et al. 2010 	



These 3 characteristic frequencies will play 
a fundamental role in deciding where 
modes propagate and where they are 
evanescent.	
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Trapping of oscillations 	



What are the regions where: kr
2 > 0  (oscillatory behaviour)    ?	



                                              kr
2 < 0  (exponentially decaying) ?	
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Trapping of oscillations 	



What are the regions where: kr
2 > 0  (oscillatory behaviour)    ?	



                                              kr
2 < 0  (exponentially decaying) ?	



Find the turning points of the equation, where kr
2 = 0                                     	
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Trapping of oscillations 	



What are the regions where: kr
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Trapping of oscillations 	



What are the regions where: kr
2 > 0  (oscillatory behaviour)    ?	



                                              kr
2 < 0  (exponentially decaying) ?	



Find the turning points of the equation, where kr
2 = 0                                     	
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Thus, we can  rewrite:	



  Modes propagate where kr
2 > 0             =>	



  Modes are evanescent where  kr
2 < 0    =>	



€ 

ω >ω l+   or   ω <ω l−

€ 

ω l− <ω <ω l+

€ 

d2X
dr2

+ kr
2X = 0

€ 

kr
2 =

1
c0
2 Sl

2 N0
2

ω 2 −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +ω 2 −ω c

2
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

€ 

kr
2 =

1
c0
2 ω

2 −ω l+
2[ ] ω 2 −ω l−

2[ ]



Margarida S. Cunha  	


Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds	



Azores, 17-27 July, 2016	



Trapping of oscillations 	



  Modes propagate where kr
2 > 0             =>	



  Modes are evanescent where  kr
2 < 0    =>	



€ 

ω >ω l+   or   ω <ω l−

€ 

ω l− <ω <ω l+

from Aerts et al. 2010 	



ωl+/2π	



ωl-/2π	
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Trapping of oscillations 	



  Modes propagate where kr
2 > 0             =>	



  Modes are evanescent where  kr
2 < 0    =>	
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A closer look at the two families of solutions	



  High frequency modes  ω2 >> N0
2   	



Upper turning point  ω2 = ωc
2   	



Trapping of modes occurs up to ~ 5.3 mHz in the sun	


… but partial reflection occurs at even higher frequencies	



Modes with frequencies lower than ~2 mHz in the sun are 
reflected below the photosphere  	


  => not so affected by the details of the outermost layers	



Near the 
surface	



Aerts et al. 2010 	
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ω  < N0	



ω  decreases as kr increases	


  => |n| increases as frequency decreases	
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Dispersion relation for gravity wave.	



Smaller kr/kh    Larger λr/λh  =>  larger ω	


  =>  larger frequencies for “needle-like” motion	



The frequency of a gravity wave is always smaller that N0	
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Trapping of oscillations 	



A closer look at the two families of solutions	



  Low frequency modes  ω2 << Sl
2   	



Turning points	



Adapted from Aerts et al. 2010 	
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Trapping of oscillations 	



A closer look at the two families of solutions	



  Low frequency modes  ω2 << Sl
2   	



Gravity waves propagate only in convectively stable regions! 	



Turning points  ω2 = N0
2   	



Adapted from Aerts et al. 2010 	
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Trapping of oscillations 	



A closer look at the two families of solutions	



  Low frequency modes  ω2 << Sl
2   	



Turning points  ω2 = N0
2   	



Adapted from Aerts et al. 2010 	
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The case of an evolved star	
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Trapping of oscillations 	



The case of an evolved star	



  Propagation diagram for the sun and a subgiant star	



Cunha et al. 2007	
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Trapping of oscillations 	



The case of an evolved star	



Cunha et al. 2007	



  Propagation diagram for the sun and a subgiant star	





Acoustic and internal gravity waves	
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Acoustic and gravity waves	



Acoustic wave 	





Margarida S. Cunha  	


Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds	



Azores, 17-27 July, 2016	



Acoustic and gravity waves	



Internal gravity wave	


http://www.phys.ocean.dal.ca/programs/doubdiff/pics/iw1.mpeg	





Summary	



Acoustic waves	

 Internal gravity waves	



  Maintained by gradient of  	


   pressure fluctuation; 	



  Radial or non-radial;	



  Propagate in convectively 	


   stable or non-stable regions	



  Maintained by gravity acting   	


  on density fluctuation;	



  Always non-radial;	



  Propagate in convectively  	


   stable regions only	
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Acoustic and gravity waves	





Numerical solutions	
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Numerical results	


Eigenfrequencies	



Aerts et al. 2010	
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Numerical results	


Eigenfrequencies	



MDI observations	



Aerts et al. 2010	
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Numerical results	


Eigenfrequencies	



Aerts et al. 2010	



Acoustic modes: n > 0	



Gravity modes:   n < 0 	
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Numerical results	


Eigenfrequencies	



Aerts et al. 2010	
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Acoustic waves 	



Gravity waves 	
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Numerical results	


Eigenfunctions	



l=0,n=23 

l=20,n=17 

l=60,n=10 

l =1,n =-5 

l =2,n =-10 

l =4,n =-19 

Aerts et al. 2010	
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Numerical results	


Eigenfunctions	



Cunha et al. 2015	





A number of important things 
that were left out	
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  The actual asymptotic analysis:	


      => analytical solutions for the eigenfunctions   	


            and eigenfrequencies	



  Frequency combinations (large separation, small 
separations, ratios, etc)	



  Inference methodologies (forward modelling, inverse 
modelling, glitches, etc)	



  Deviations from spherical symmetry (rotation, 
magnetic effects, application of the variational principle)	



  Mode excitation  (stochastic, coherent)	



  etc…  	





Linear, adiabatic oscillations in the Cowling approximation.	



High n, low l, acoustic oscillations:	



•   Δν0   prop  (M/R3)1/2 	



•   α  function of ν and is due to surface effects	



•   Note: ν=ω/2π	



Asymptotic analysis	





Asymptotic analysis	


Adiabatic oscillations in the Cowling approximation.	



High n, low l, acoustic oscillations:	



Δν0   prop  (M/R3)1/2 	





Asymptotic analysis	



Large separations Δνnl	





Asymptotic analysis	



Large separations Δνnl	



 α (M/R3)1/2 	



ν	



Δνnl	

Schematic	


Power	


Spectrum	



n-1,0	

 n-1,1	

 n,0	

 n,1	

 n+1,0	





Asymptotic analysis	


Adiabatic oscillations in the Cowling approximation.	



High n, low l, acoustic oscillations:	





Asymptotic analysis	



ν	



Δνnl	


Schematic	


Power	


Spectrum	



n-1,2	



δνnl	



n-1,0	

 n-1,1	

 n,0	

 n,1	



small separations δνnl	





Asymptotic analysis	



Sun as a star	





Enjoy the rest of the school 
and have a great stay at  

Azores!	



THE END	




