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Wave in a supporting medium: material does not need to move from 
one point of the space to the other to propagate the information	
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Asteroseismology How 
does it work?	


One mode  one piece of information	


  Average information on propagation 
cavity	


  With several modes one can hope to 
get localized information	
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Asteroseismology: Across the HR diagram	

Kurtz 2010 adapted from Aerts et al. 2010 	
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  Intrinsically unstable	

	
 	
Classical	


Origin 	

	
  Intrinsically stable	

	
 	
Solar-like	


	
   Acoustic waves	

	
 	
p modes	


Nature 	

	
   Internal Gravity waves	

	
 	
g modes	


Kurtz 2010 adapted from Aerts et al. 2010 	


Asteroseismology: Classification	
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Hydrodynamics	




Hydrodynamics	


Assume that the gas can be treated as a continuum;  Thermodynamic properties	

well defined at each position r	


Let ϕ be a scalar property of the gas.	


r0	


r1	


dr	


ϕ	


Margarida S. Cunha  	

Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds	


Azores, 17-27 July, 2016	




Hydrodynamics	


Assume that the gas can be treated as a continuum;  Thermodynamic properties	

well defined at each position r	


Let ϕ be a scalar property of the gas.	

Two ways to look at time evolution of ϕ:	


1.   At fixed position => Eulerian description	

2.   Following the motion => Lagrangian description	


r0	


r1	


dr	


ϕ	
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Hydrodynamics	


Continuity equation : The mass variation within a given volume V must equal, with 
opposite sign, the mass crossing the surface S that encloses the volume V.	
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Hydrodynamics	

Following the fluid - Lagrangian description	
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 v - density	
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Equation of motion: The change in linear momentum of an element of fluid must equal 
the force acting on it by its surroundings.  	


Continuity equation	

(conservation of mass)	
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Adiabatic approximation	

Characteristic time scale for radiation:	

Sun as a whole: 107 years	

Solar convection zone:  103 years	
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Linear adiabatic pulsation about a static, spherically symmetric equilibrium	
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Linear adiabatic pulsation about a static, spherically symmetric equilibrium	


Variables: 4 (ρ’, p’, ϕ’, δr)	


Equations: 4	
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Thus: system of equation is 
closed, so far as equilibrium 
quantities are known.	


  => can solve it to get solutions 
for the 4 variables.	


  

€ 

ρ'+ ∇⋅ (ρ0δ
 r ) = 0

ρ0
∂2δ
 r 

∂t 2 = −∇ ʹ′ p − ρ0∇φ'− ʹ′ ρ ∇φ0

∇2φ'= 4πGρ'

p'+δ r ⋅ ∇p0 =
Γ1,0 p0

ρ0
(ρ'+δ r ⋅ ∇ρ0)



Solutions on a sphere	




Solutions on a sphere	


Consider the spherical coordinates (r,θ,φ)	


Variables  (ρ’, p’, ϕ’, δr) are function of: r, θ, φ, t 	
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Solutions on a sphere	


Consider the spherical coordinates (r,θ,φ)	


Variables  (ρ’, p’, ϕ’, δr) are function of: r, θ, φ, t 	


The equations admit solutions of the type: 

  

€ 

p'(r,θ,ϕ,t) = Re[p'(r)Yl
m (θ,ϕ)e− iωt ]

ρ'(r,θ,ϕ,t) = Re[ρ'(r)Yl
m (θ,ϕ)e− iωt ]

φ'(r,θ,ϕ,t) = Re[φ'(r)Yl
m (θ,ϕ)e− iωt ]

δ
 r (r,θ,ϕ,t) = Re ξr (r)Yl

mˆ a r + ξh (r) ∂Yl
m

∂θ
ˆ a θ +

1
sinθ

∂Yl
m

∂φ
ˆ a φ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  e−iωt

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
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Solutions on a sphere	


Consider the spherical coordinates (r,θ,φ)	


Variables  (ρ’, p’, ϕ’, δr) are function of: r, θ, φ, t 	


The equations admit solutions of the type: 

  

€ 

p'(r,θ,ϕ,t) = Re[p'(r)Yl
m (θ,ϕ)e− iωt ]

ρ'(r,θ,ϕ,t) = Re[ρ'(r)Yl
m (θ,ϕ)e− iωt ]

φ'(r,θ,ϕ,t) = Re[φ'(r)Yl
m (θ,ϕ)e− iωt ]

δ
 r (r,θ,ϕ,t) = Re ξr (r)Yl

mˆ a r + ξh (r) ∂Yl
m

∂θ
ˆ a θ +

1
sinθ

∂Yl
m

∂φ
ˆ a φ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  e−iωt

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
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Solutions on a sphere	


Consider the spherical coordinates (r,θ,φ)	


Variables  (ρ’, p’, ϕ’, δr) are function of: r, θ, φ, t 	


The equations admit solutions of the type: 

  

€ 

p'(r,θ,ϕ,t) = Re[p'(r)Yl
m (θ,ϕ)e− iωt ]

ρ'(r,θ,ϕ,t) = Re[ρ'(r)Yl
m (θ,ϕ)e− iωt ]

φ'(r,θ,ϕ,t) = Re[φ'(r)Yl
m (θ,ϕ)e− iωt ]

δ
 r (r,θ,ϕ,t) = Re ξr (r)Yl

mˆ a r + ξh (r) ∂Yl
m

∂θ
ˆ a θ +

1
sinθ

∂Yl
m

∂φ
ˆ a φ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  e−iωt

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
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l – angular degree: the number of nodes on the sphere	


Spherical Harmonics Yl
m	


€ 

kh =
l(l +1)
R

m  - azimuthal order: |m| =number of nodes along the equator	

                                               => orientation on the sphere	


Note: |m| ≤ l	
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l – angular degree: the number of nodes on the sphere	


Spherical Harmonics Yl
m	


m  - azimuthal order: |m| =number of nodes along the equator	

                                               => orientation on the sphere	


Note: |m| ≤ l	
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€ 

kh =
l(l +1)
R

l=0	
 l=1	

m=0	


l=1	

m=-1	




l – angular degree: the number of nodes on the sphere	


Spherical Harmonics Yl
m	


m  - azimuthal order: |m| =number of nodes along the equator	

                                               => orientation on the sphere	


Note: |m| ≤ l	
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l=2	

m=0	


l=2	

m=2	


l=4	

m=2	


l=10	

m=5	


adapted from Aerts et al. 2010 	
 € 

kh =
l(l +1)
R



l – angular degree: the number of nodes on the sphere	


Spherical Harmonics Yl
m	


m  - azimuthal order: |m| =number of nodes along the equator	

                                               => orientation on the sphere	


Note: |m| ≤ l	
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l=2	

m=0	


l=2	

|m|=2	


l=4	

|m|=2	


l=10	

|m|=5	


adapted from Aerts et al. 2010 	
 € 

kh =
l(l +1)
R



Solutions on a sphere	


Consider the spherical coordinates (r,θ,φ)	


Variables  (ρ’, p’, ϕ’, δr) are function of: r, θ, φ, t 	


The equations admit solutions of the type: 

  

€ 

p'(r,θ,ϕ,t) = Re[p'(r)Yl
m (θ,ϕ)e− iωt ]

ρ'(r,θ,ϕ,t) = Re[ρ'(r)Yl
m (θ,ϕ)e− iωt ]

φ'(r,θ,ϕ,t) = Re[φ'(r)Yl
m (θ,ϕ)e− iωt ]

δ
 r (r,θ,ϕ,t) = Re ξr (r)Yl

mˆ a r + ξh (r) ∂Yl
m

∂θ
ˆ a θ +

1
sinθ

∂Yl
m

∂φ
ˆ a φ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  e−iωt

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
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Solutions on a sphere	


Consider the spherical coordinates (r,θ,φ)	


Variables  (ρ’, p’, ϕ’, δr) are function of: r, θ, φ, t 	


The equations admit solutions of the type: 
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p'(r,θ,ϕ,t) = Re[p'(r)Yl
m (θ,ϕ)e− iωt ]

ρ'(r,θ,ϕ,t) = Re[ρ'(r)Yl
m (θ,ϕ)e− iωt ]

φ'(r,θ,ϕ,t) = Re[φ'(r)Yl
m (θ,ϕ)e− iωt ]

δ
 r (r,θ,ϕ,t) = Re ξr (r)Yl

mˆ a r + ξh (r) ∂Yl
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∂θ
ˆ a θ +

1
sinθ

∂Yl
m

∂φ
ˆ a φ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  e−iωt

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
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Equations for the depth dependent amplitudes	


Substituting the solutions on the perturbed equations  
… and after significant algebra   

€ 

dξr
dr

= −
1

Γ1,0p0
dp0
dr

+
2
r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ξr +

Sl
2

ω 2 −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1

c0
2ρ0

p'+ l(l +1)
r2ω 2 φ'

dp'
dr

= ρ0(ω
2 − N0

2)ξr − ρ0
dφ '
dr

+
1

Γ1,0p0
dp0
dr

p'

1
r2

d
dr

r2 dφ '
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 4πG

p'
c0
2 +

ρ0N0
2

g0
ξr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

l(l +1)
r2

φ '
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Equations for the depth dependent amplitudes	


Substituting the solutions on the perturbed equations  
… and after significant algebra   

€ 

dξr
dr

= −
1

Γ1,0p0
dp0
dr

+
2
r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ξr +

Sl
2

ω 2 −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1

c0
2ρ0

p'+ l(l +1)
r2ω 2 φ'

dp'
dr

= ρ0(ω
2 − N0

2)ξr − ρ0
dφ '
dr

+
1

Γ1,0p0
dp0
dr

p'

1
r2

d
dr

r2 dφ '
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 4πG

p'
c0
2 +

ρ0N0
2

g0
ξr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

l(l +1)
r2

φ '
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4 variables: ξr, p’, ϕ’, dϕ’/dr	

4th order system	


Note1: all derivatives are total derivatives because the functions depend on r only	




Equations for the depth dependent amplitudes	


Substituting the solutions on the perturbed equations  
… and after significant algebra   

€ 

dξr
dr

= −
1

Γ1,0p0
dp0
dr

+
2
r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ξr +

Sl
2

ω 2 −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1

c0
2ρ0

p'+ l(l +1)
r2ω 2 φ'

dp'
dr

= ρ0(ω
2 − N0

2)ξr − ρ0
dφ '
dr

+
1

Γ1,0p0
dp0
dr

p'

1
r2

d
dr

r2 dφ '
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 4πG

p'
c0
2 +

ρ0N0
2

g0
ξr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

l(l +1)
r2

φ '
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4 variables: ξr, p’, ϕ’, dϕ’/dr	

4th order system	


Note2: equations depend on l but not on m, thus the eigenvalues ω cannot depend on m.	




Equations for the depth dependent amplitudes	


Substituting the solutions on the perturbed equations  
… and after significant algebra   

€ 

dξr
dr

= −
1

Γ1,0p0
dp0
dr

+
2
r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ξr +

Sl
2

ω 2 −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1

c0
2ρ0

p'+ l(l +1)
r2ω 2 φ'

dp'
dr

= ρ0(ω
2 − N0

2)ξr − ρ0
dφ '
dr

+
1

Γ1,0p0
dp0
dr

p'

1
r2

d
dr

r2 dφ '
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 4πG

p'
c0
2 +

ρ0N0
2

g0
ξr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

l(l +1)
r2

φ '
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4 variables: ξr, p’, ϕ’, dϕ’/dr	

4th order system	

This system, together with the boundary conditions, forms an eigenvalue problem	

=> Solving it provide the eigenvalues, ω, and eigenfunctions, ξr, p’, ϕ’, dϕ’/dr.	




Equations for the depth dependent amplitudes	


Substituting the solutions on the perturbed equations  
… and after significant algebra   

! 

d"r
dr

= #
1

$1,0p0
dp0
dr

+
2
r

% 

& 
' 

( 

) 
* "r +

Sl
2

+ 2 #1
% 

& 
' 

( 

) 
* 
1

c0
2,0

p'+ l(l +1)
r2+ 2 -'

dp'
dr

= ,0(+
2 # N0

2)"r # ,0
d- '
dr

+
1

$1,0p0
dp0
dr

p'

1
r2

d
dr

r2 d- '
dr

% 

& 
' 

( 

) 
* = 4.G

p'
c0
2 +

,0N0
2

g0
"r

% 

& 
' 

( 

) 
* +

l(l +1)
r2

- '
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Sl : Lamb frequency	


N0 : Buoyancy frequency 	

! 

Sl
2 =

l(l +1)
r2

c0
2

! 

N0
2 = g0

1
"1,0

d ln p0
dr

#
d ln$0
dr

% 

& 
' 

( 

) 
* 



Equations for the depth dependent amplitudes	


Substituting the solutions on the perturbed equations  
… and after significant algebra   

€ 

dξr
dr

= −
1

Γ1,0p0
dp0
dr

+
2
r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ξr +

Sl
2

ω 2 −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1

c0
2ρ0

p'+ l(l +1)
r2ω 2 φ'

dp'
dr

= ρ0(ω
2 − N0

2)ξr − ρ0
dφ '
dr

+
1

Γ1,0p0
dp0
dr

p'

1
r2

d
dr

r2 dφ '
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 4πG

p'
c0
2 +

ρ0N0
2

g0
ξr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

l(l +1)
r2

φ '
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Sl : Lamb frequency	


N0 : Buoyancy frequency 	

€ 

Sl
2 =

l(l +1)
r2

c0
2

€ 

N0
2 = g0

1
Γ1,0

d ln p0
dr

−
d lnρ0
dr

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

ρ2
*	
 ρ2	


ρ1	
ρ1
*	


N0
2 > 0 =>  ρ2

* > ρ2	


N0
2 <  0 =>  ρ2

* < ρ2  	




Equations for the depth dependent amplitudes	


Substituting the solutions on the perturbed equations  
… and after significant algebra   

€ 

dξr
dr

= −
1

Γ1,0p0
dp0
dr

+
2
r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ξr +

Sl
2

ω 2 −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1

c0
2ρ0

p'+ l(l +1)
r2ω 2 φ'

dp'
dr

= ρ0(ω
2 − N0

2)ξr − ρ0
dφ '
dr

+
1

Γ1,0p0
dp0
dr

p'

1
r2

d
dr

r2 dφ '
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 4πG

p'
c0
2 +

ρ0N0
2

g0
ξr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

l(l +1)
r2

φ '
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Sl : Lamb frequency	


N0 : Buoyancy frequency 	

€ 

Sl
2 =

l(l +1)
r2

c0
2

€ 

N0
2 = g0

1
Γ1,0

d ln p0
dr

−
d lnρ0
dr

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

N0	


Sl	


adapted from Aerts et al. 2010 	




Boundary conditions	
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Fourth order system => 4 boundary conditions required	


  2 conditions at r=0	

  2 condition at r=R 	
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Fourth order system => 4 boundary conditions required	


  2 conditions at r=0	

  2 condition at r=R 	


Conditions at r=0 	

Obtained by imposing regularity of the solutions at the centre	


Expand the equations near r=0 => find that	


p’~ O (rl)  ;  ϕ’ ~ O (rl) ;   ξr ~ O (rα)    with α=1 for l=0	

                                                                      α=l-1 for l>0	
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Fourth order system => 4 boundary conditions required	


  2 conditions at r=0	

  2 condition at r=R 	


Conditions at r=0 	

Obtained by imposing regularity of the solutions at the centre	


Expand the equations near r=0 => find that	


p’~ O (rl)  ;  ϕ’ ~ O (rl) ;   ξr ~ O (rα)    with α=1 for l=0	

                                                                      α=l-1 for l>0	

Consequently:	


€ 

dφ'
dr

=
l
r
φ '    ;   dp'

dr
=
l
r
p'    ;   dξr

dr
=
α
r
ξr



Boundary conditions	
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Fourth order system => 4 boundary conditions required	


  2 conditions at r=0	

  2 condition at r=R 	


Conditions at r=0 	

Obtained by imposing regularity of the solutions at the centre	


Expand the equations near r=0 => find that	


p’~ O (rl)  ;  ϕ’ ~ O (rl) ;   ξr ~ O (rα)    with α=1 for l=0	

                                                                      α=l-1 for l>0	

Consequently:	
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=
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Fourth order system => 4 boundary conditions required	


  2 conditions at r=0	

  2 condition at r=R 	


Conditions at r=0	


€ 

dφ'
dr

=
l
r
φ '    ;   dp'

dr
=
l
r
p'    

Conditions at r=R	

1st condition: matching ϕ’ and its derivative to solution for vacuum field 	


ϕ’ ~ O (r-l-1) 	




Boundary conditions	
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Fourth order system => 4 boundary conditions required	


  2 conditions at r=0	

  2 condition at r=R 	


Conditions at r=0	


€ 

dφ'
dr

=
l
r
φ '    ;   dp'

dr
=
l
r
p'    

Conditions at r=R	

1st condition: matching ϕ’ and its derivative to solution for vacuum field 	


ϕ’ ~ O (r-l-1) 	


€ 

dφ'
dr

= −
(l +1)
r

φ '      



Boundary conditions	
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Fourth order system => 4 boundary conditions required	


  2 conditions at r=0	

  2 condition at r=R 	


Conditions at r=0	


€ 

dφ'
dr

=
l
r
φ '    ;   dp'

dr
=
l
r
p'    

Conditions at r=R	

1st condition: matching ϕ’ and its derivative to solution for vacuum field 	


ϕ’ ~ O (r-l-1)	


2nd condition: depends on how the atmosphere is treated	


e.g. assuming free surface => δp’=0	

(But this is not adequate for a real star!)	

A better option is to make the numerical solutions match onto the analytical  
solutions for an isothermal atmosphere.	


€ 

dφ'
dr

= −
(l +1)
r

φ '      

€ 

p'+ξr
dp0

dr
= 0    



Eigenvalue problem	
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centre	
 surface	
radius	


We reduced the problem to 1D	


Equations + boundary conditions 	

     => admit non-trivial solutions only for a discrete values of frequencies	


This set of frequencies is numbered by an integer n, the radial order   	




Eigenvalue problem	
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ω=ω(n,l,m)	


In summary: eigenfrequencies are discrete and characterized by three quantum numbers:    	


l – angular degree: the number of nodes on the sphere	


m  - azimuthal order: |m| =number of nodes along the equator	

                                               => orientation on the sphere	


n –radial order: |n| related to the number of nodes along the radial direction	




Eigenvalue problem	
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In summary: eigenfrequencies are discrete and characterized by three quantum numbers:    	

Adapted from Cunha et al 2007 (Bison data) 	


ω=ω(n,l,m)	




Equations for the depth dependent amplitudes	
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Equations depend on l, but not on m	

=>  In a spherically symmetric star, the eigenvalues are independent of m  	




Equations for the depth dependent amplitudes	
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Equations depend on l, but not on m	

=>  In a spherically symmetric star, the eigenvalues are independent of m  	


ω=ω(n,l,m)	


Note: That is not the case if the star rotates or has a magnetic field, braking the symmetry.	




Waves in a spherically symmetric star	
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Waves in a spherically symmetric star	
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Waves in a spherically symmetric star	


ω=ω(n,l,m)	

One eigenmode          any combination	




Trapping of the oscillations	




The full solutions must be obtained numerically. However, under particular 
approximations, approximate analytical solutions can be derived. 	
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Trapping of oscillations 	




The full solutions must be obtained numerically. However, under particular 
approximations, approximate analytical solutions can be derived. 	


The Cowling approximation 	

Neglect the perturbation to the gravitational potential, ϕ’ 	

   => reduces the system to 2nd order	


Valid when l is large or |n| is large	
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Trapping of oscillations 	




The full solutions must be obtained numerically. However, under particular 
approximations, approximate analytical solutions can be derived. 	


The Cowling approximation 	

Neglect the perturbation to the gravitational potential, ϕ’ 	

   => reduces the system to 2nd order	


Valid when l is large or |n| is large	
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The full solutions must be obtained numerically. However, under particular 
approximations, approximate analytical solutions can be derived. 	


The Cowling approximation 	

Neglect the perturbation to the gravitational potential, ϕ’ 	

   => reduces the system to 2nd order	


Valid when l is large or |n| is large	
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Trapping of oscillations 	


2 variables: ξr, p’	

2nd order system	




  Work under Cowling approximation	

   Assume that locally oscillations can be treated as in a plane-parallel layer 
under constant gravity (i.e., neglect derivatives of g and r)	
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Trapping of oscillations 	

Following Deubner and Gough 1984	


(See also, Gough 93)	




  Work under Cowling approximation	

   Assume that locally oscillations can be treated as in a plane-parallel layer 
under constant gravity (i.e., neglect derivatives of g and r)	


  Define the new variable:	
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€ 

X = c0
2ρ0

1/ 2∇⋅ δ
 r 

Trapping of oscillations 	

Following Deubner and Gough 1984	
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€ 

d2X
dr2

+ kr
2X = 0

In terms of the new variable the 2nd order system of equations can be reduced 
to a single  2nd order wave equation:	


Where kr is the local radial wavenember	


Trapping of oscillations 	


  Work under Cowling approximation	

   Assume that locally oscillations can be treated as in a plane-parallel layer 
under constant gravity (i.e., neglect derivatives of g and r)	


  Define the new variable:	


Following Deubner and Gough 1984	


  

€ 

X = c0
2ρ0

1/ 2∇⋅ δ
 r 



Trapping of oscillations 	


Recall the solutions of the wave equation with constant k	
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€ 

d2y
dx 2

+ k 2y = 0



Trapping of oscillations 	


Recall the solutions of the wave equation with constant k	
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€ 

d2y
dx 2

+ k 2y = 0

General solution is:	


where A and B are complex constants  	


€ 

y = Aeikx + Be−ikx



Trapping of oscillations 	


Recall the solutions of the wave equation with constant k	
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€ 

d2y
dx 2

+ k 2y = 0

General solution is:	


where A and B are complex constants  	


€ 

y = Aeikx + Be−ikx

   k2 > 0   =>   k is real  ;  Re{y}=acoskx+bsinkx	


                    => oscillatory behaviour	


   k2 < 0   =>  k = i |k|  ;  Re{y}= ae-|k|x+be|k|x	


                             => exponential grow or decay	
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€ 

d2X
dr2

+ kr
2X = 0

Trapping of oscillations 	


In the star kr is not constant!	
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Trapping of oscillations 	


€ 

d2X
dr2

+ kr
2X = 0In the star kr is not constant!	
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Trapping of oscillations 	
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Trapping of oscillations 	


from Aerts et al. 2010 	
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2X = 0In the star kr is not constant!	
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Trapping of oscillations 	


N0	


Sl	


adapted from Aerts et al. 2010 	


from Aerts et al. 2010 	


These 3 characteristic frequencies will play 
a fundamental role in deciding where 
modes propagate and where they are 
evanescent.	
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Trapping of oscillations 	


What are the regions where: kr
2 > 0  (oscillatory behaviour)    ?	


                                              kr
2 < 0  (exponentially decaying) ?	
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Trapping of oscillations 	


What are the regions where: kr
2 > 0  (oscillatory behaviour)    ?	


                                              kr
2 < 0  (exponentially decaying) ?	


Find the turning points of the equation, where kr
2 = 0                                     	
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Trapping of oscillations 	


What are the regions where: kr
2 > 0  (oscillatory behaviour)    ?	


                                              kr
2 < 0  (exponentially decaying) ?	


Find the turning points of the equation, where kr
2 = 0                                     	
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Trapping of oscillations 	


What are the regions where: kr
2 > 0  (oscillatory behaviour)    ?	


                                              kr
2 < 0  (exponentially decaying) ?	


Find the turning points of the equation, where kr
2 = 0                                     	
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Thus, we can  rewrite:	


  Modes propagate where kr
2 > 0             =>	


  Modes are evanescent where  kr
2 < 0    =>	
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Trapping of oscillations 	


  Modes propagate where kr
2 > 0             =>	


  Modes are evanescent where  kr
2 < 0    =>	


€ 

ω >ω l+   or   ω <ω l−

€ 

ω l− <ω <ω l+

from Aerts et al. 2010 	


ωl+/2π	


ωl-/2π	
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Trapping of oscillations 	


  Modes propagate where kr
2 > 0             =>	


  Modes are evanescent where  kr
2 < 0    =>	
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Trapping of oscillations 	


  Modes propagate where kr
2 > 0             =>	


  Modes are evanescent where  kr
2 < 0    =>	


€ 

ω >ω l+   or   ω <ω l−
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ω l− <ω <ω l+

ωl+/2π	


ωl-/2π	


Adapted from Aerts et al. 2010 	
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Trapping of oscillations 	


  Modes propagate where kr
2 > 0             =>	


  Modes are evanescent where  kr
2 < 0    =>	
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ω >ω l+   or   ω <ω l−
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Adapted from Aerts et al. 2010 	
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Trapping of oscillations 	


  Modes propagate where kr
2 > 0             =>	


  Modes are evanescent where  kr
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Trapping of oscillations 	


  Modes propagate where kr
2 > 0             =>	


  Modes are evanescent where  kr
2 < 0    =>	


€ 

ω >ω l+   or   ω <ω l−

€ 

ω l− <ω <ω l+

ωl+/2π	


ωl-/2π	


Adapted from Aerts et al. 2010 	




A closer look at the solutions	
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Trapping of oscillations 	


A closer look at the two families of solutions	


  High frequency modes  ω2 >> N0
2   	
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Trapping of oscillations 	


A closer look at the two families of solutions	


  High frequency modes  ω2 >> N0
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Adapted from Aerts et al. 2010 	
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Trapping of oscillations 	


A closer look at the two families of solutions	


  High frequency modes  ω2 >> N0
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Trapping of oscillations 	


A closer look at the two families of solutions	


  High frequency modes  ω2 >> N0
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Trapping of oscillations 	


A closer look at the two families of solutions	


  High frequency modes  ω2 >> N0
2   	
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Trapping of oscillations 	


A closer look at the two families of solutions	


  High frequency modes  ω2 >> N0
2   	


€ 

ω ≈ c0k
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2

Dispersion relation for acoustic wave!	


ω  increases as k increases	

  => the radial order n increases with the frequency	


Except 
near the 
surface	
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A closer look at the two families of solutions	


  High frequency modes  ω2 >> N0
2   	


Lower turning point	


Except 
near the 
surface	
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Trapping of oscillations 	


A closer look at the two families of solutions	


  High frequency modes  ω2 >> N0
2   	
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Trapping of oscillations 	


A closer look at the two families of solutions	


  High frequency modes  ω2 >> N0
2   	


€ 

r1,l =
l(l +1)c0
ω

Lower turning point  ω2 = Sl
2   	


r1,l  increases as l increases	

  => larger degree modes have shallower cavities	


For fixed l:  r1,l  increases as ω increases 	

  => higher frequency modes propagate deeper, for fixed degree	


Except 
near the 
surface	
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r1,l  increases as l increases	

  => larger degree modes have shallower cavities	


For fixed l:  r1,l  increases as ω increases 	

  => higher frequency modes propagate deeper, for fixed degree	


Except 
near the 
surface	
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Trapping of oscillations 	


A closer look at the two families of solutions	


  High frequency modes  ω2 >> N0
2   	


Upper turning point	
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A closer look at the two families of solutions	
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A closer look at the two families of solutions	


  High frequency modes  ω2 >> N0
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Trapping of oscillations 	


A closer look at the two families of solutions	


  High frequency modes  ω2 >> N0
2   	


Upper turning point  ω2 = ωc
2   	


Trapping of modes occurs up to ~ 5.3 mHz in the sun	

… but partial reflection occurs at even higher frequencies	


Near the 
surface	


Aerts et al. 2010 	
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Trapping of oscillations 	


A closer look at the two families of solutions	


  High frequency modes  ω2 >> N0
2   	


Upper turning point  ω2 = ωc
2   	


Trapping of modes occurs up to ~ 5.3 mHz in the sun	

… but partial reflection occurs at even higher frequencies	


Modes with frequencies lower than ~2 mHz in the sun are 
reflected below the photosphere  	

  => not so affected by the details of the outermost layers	


Near the 
surface	


Aerts et al. 2010 	
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Trapping of oscillations 	


A closer look at the two families of solutions	


  Low frequency modes  ω2 << Sl
2   	
 Adapted from Aerts et al. 2010 	
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A closer look at the two families of solutions	
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A closer look at the two families of solutions	


  Low frequency modes  ω2 << Sl
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ω  < N0	


ω  decreases as kr increases	

  => |n| increases as frequency decreases	


kh
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Trapping of oscillations 	


A closer look at the two families of solutions	


  Low frequency modes  ω2 << Sl
2   	


Dispersion relation for gravity wave.	


Smaller kr/kh    Larger λr/λh  =>  larger ω	

  =>  larger frequencies for “needle-like” motion	


The frequency of a gravity wave is always smaller that N0	


Adapted from Aerts et al. 2010 	
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Trapping of oscillations 	


A closer look at the two families of solutions	


  Low frequency modes  ω2 << Sl
2   	


Turning points	


Adapted from Aerts et al. 2010 	
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Trapping of oscillations 	


A closer look at the two families of solutions	


  Low frequency modes  ω2 << Sl
2   	


Gravity waves propagate only in convectively stable regions! 	


Turning points  ω2 = N0
2   	


Adapted from Aerts et al. 2010 	
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Trapping of oscillations 	


A closer look at the two families of solutions	


  Low frequency modes  ω2 << Sl
2   	


Turning points  ω2 = N0
2   	


Adapted from Aerts et al. 2010 	
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The case of an evolved star	
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Trapping of oscillations 	


The case of an evolved star	


  Propagation diagram for the sun and a subgiant star	


Cunha et al. 2007	
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Trapping of oscillations 	


The case of an evolved star	


Cunha et al. 2007	


  Propagation diagram for the sun and a subgiant star	




Acoustic and internal gravity waves	
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Acoustic and gravity waves	


Acoustic wave 	
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Acoustic and gravity waves	


Internal gravity wave	

http://www.phys.ocean.dal.ca/programs/doubdiff/pics/iw1.mpeg	




Summary	


Acoustic waves	
 Internal gravity waves	


  Maintained by gradient of  	

   pressure fluctuation; 	


  Radial or non-radial;	


  Propagate in convectively 	

   stable or non-stable regions	


  Maintained by gravity acting   	

  on density fluctuation;	


  Always non-radial;	


  Propagate in convectively  	

   stable regions only	
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Acoustic and gravity waves	




Numerical solutions	
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Numerical results	

Eigenfrequencies	


Aerts et al. 2010	
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Numerical results	

Eigenfrequencies	


MDI observations	


Aerts et al. 2010	
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Numerical results	

Eigenfrequencies	


Aerts et al. 2010	


Acoustic modes: n > 0	


Gravity modes:   n < 0 	
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Numerical results	

Eigenfrequencies	


Aerts et al. 2010	
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Remember	


Acoustic waves 	


Gravity waves 	
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Numerical results	

Eigenfunctions	


l=0,n=23 

l=20,n=17 

l=60,n=10 

l =1,n =-5 

l =2,n =-10 

l =4,n =-19 

Aerts et al. 2010	




Margarida S. Cunha  	

Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds	


Azores, 17-27 July, 2016	


Numerical results	

Eigenfunctions	


Cunha et al. 2015	




A number of important things 
that were left out	
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  The actual asymptotic analysis:	

      => analytical solutions for the eigenfunctions   	

            and eigenfrequencies	


  Frequency combinations (large separation, small 
separations, ratios, etc)	


  Inference methodologies (forward modelling, inverse 
modelling, glitches, etc)	


  Deviations from spherical symmetry (rotation, 
magnetic effects, application of the variational principle)	


  Mode excitation  (stochastic, coherent)	


  etc…  	




Linear, adiabatic oscillations in the Cowling approximation.	


High n, low l, acoustic oscillations:	


•   Δν0   prop  (M/R3)1/2 	


•   α  function of ν and is due to surface effects	


•   Note: ν=ω/2π	


Asymptotic analysis	




Asymptotic analysis	

Adiabatic oscillations in the Cowling approximation.	


High n, low l, acoustic oscillations:	


Δν0   prop  (M/R3)1/2 	




Asymptotic analysis	


Large separations Δνnl	




Asymptotic analysis	


Large separations Δνnl	


 α (M/R3)1/2 	


ν	


Δνnl	
Schematic	

Power	

Spectrum	


n-1,0	
 n-1,1	
 n,0	
 n,1	
 n+1,0	




Asymptotic analysis	

Adiabatic oscillations in the Cowling approximation.	


High n, low l, acoustic oscillations:	




Asymptotic analysis	


ν	


Δνnl	

Schematic	

Power	

Spectrum	


n-1,2	


δνnl	


n-1,0	
 n-1,1	
 n,0	
 n,1	


small separations δνnl	




Asymptotic analysis	


Sun as a star	




Enjoy the rest of the school 
and have a great stay at  

Azores!	


THE END	



