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Introduction

This lecture is intended as a crash course on some of the main
data analysis concepts and techniques employed contemporarily in
the asteroseismic study of stars exhibiting solar-like oscillations.

The several concepts and techniques will be presented as we follow
the typical workflow of the data analysis process.

The contents of this lecture strongly reflect my own experience as
a data analyst. For that reason, | have been careful enough to
provide references to the work conducted by others, so that you
can easily expand on the material presented here.
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Introduction

Solar-like oscillations in the HR diagram

Solar-like oscillations are excited by
turbulent convection in the outer
layers of stars. Consequently, all
stars cool enough to harbor an outer
convective envelope may be
expected to exhibit solar-like
oscillations.

Among several other classes of
pulsating stars, solar-like oscillations
are detectable in main-sequence
core, and post-main-sequence shell,
hydrogen-burning stars residing on
the cool side of the Cepheid http://astro.phys.au.dk/~jcd/HELAS/puls_HR/

instability strip.
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Introduction

The Kepler legacy

The NASA Kepler mission has
led to a revolution in the field of
cool-star asteroseismology by
detecting solar-like oscillations in
several hundred solar-type stars
and in over ten thousand red
giants.

Of all these stars about 100 are
also Kepler Objects of Interest
(KOls), i.e., candidate
exoplanet-host stars.

10° T T T T T
8 Kepler KASC stars
= Kepler objects of interest

102 |

LiL,

10"

7,000 6,500 6,000 5,500 5,000

Test (K)

4,500 4,000

Chaplin & Miglio (2013, ARA&A, 51, 353)



Introduction

Data analysis workflow —

. . . Analysis-ready - / ‘Dthsrhigh-\eve\lt.
One first establishes whether signatures lightcurve \_imputaspriors. |
of solar-like oscillations are detectable in . o

: Inputlighteurve &
the power spectrum of the light curve. "0 Report
If they are, an attempt is made at cletens?
yes
extracting global asteroseismic Aspoamy MO w
- granulation?

parameters from the data.

yes Report
and END

One then establishes whether the m
oscillation spectrum is of sufficient priers
quality to allow extraction of individual g oy poor fit

frequencies. If the answer is yes,
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individual mode parameters are then

extracted by fitting a multiparameter | Bt
model to the oscillation spectrum, i.e., R

by peak-bagging the spectrum.
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Introduction

Data analysis workflow (cont.) o
. . Analysis-ready - [/ Other high-level
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Nyquist sampling theorem and aliasing
Time-domain filterir
Digital signal processing and spectral analysis Power spectral d stimation

er spectrum statistics and hypothesis testing
Non-Fourier periodograms

Whereas some temporal phenomena can be understood through
models in the time domain involving deterministic trends or
stochastic autoregressive behavior, others are dominated by
periodic behavior that is most effectively modeled in the frequency
domain.

The functional form of solar-like oscillations is that of a
stochastically-excited harmonic oscillator. This being a
periodic functional form, the Fourier transform is the obvious
choice for performing data analysis.
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Non-Fourier periodograms

Let us consider the idealized case of a continuous signal x(t)
sampled by a set of impulse functions regularly spaced by At.

Since the Fourier transform of such a set of impulse functions is
another set of impulse functions with separation 1/At in the
frequency domain, one can use the convolution theorem to show
that the transform of the sampled signal is periodic:

+00 “+o0o
x(t) S 5(t—nAt)<:>X(u)*i > i(v-L).

where X(v) is the Fourier transform of x(t).

9/60



Nyquist sampling theorem and aliasing
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The Nyquist sampling theorem states that if the Fourier
transform of a continuous signal is band-limited, i.e., is zero for all
|v| > 1im, then x(t) can be uniquely reconstructed from a

knowledge of its sampled values at uniform intervals of
At <1/(2 tip).
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Gregory (2005, Bayesian Logical Data Analysis for the Physical Sciences, Cambridge University Press)
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For a given uniform sampling interval At, the Nyquist frequency
is defined as vnyq=1/(2At).

In case the continuous signal being sampled contains frequency
components above the Nyquist frequency, these will give rise to an
effect known as aliasing, whereby the transform of the continuous
signal is distorted due to spectral leakage.

The signal is then said to be undersampled and can no longer be
uniquely recovered.
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The Nyquist frequency can be thought
of as the highest useful frequency to
search for in the power spectrum.

NE 0 -
However, based on astrophysical & -100 3
arguments, one can also accept ~200 3
SC spectrum '
. -300 4
frequencies above vnyq.
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i.e., above the associated Nyquist f;“’”
frequency of ~283 uHz, are now being 2
explored. Targets of interest are cool !
subgiants and stars lying at the base of 200 iégquen;yafgm) 350
the red-giant branch.
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Chaplin et al. (2014, MNRAS, 445, 946)
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Regular daily gaps in the light curve are usually present in
observations carried out from the ground and also give rise to
frequency aliasing. Daily aliases, appearing at splittings of

+1 cycle/day (or, equivalently, +£11.57 ;Hz), are particularly
problematic when observing solar-like oscillations, since frequency
separations of that same magnitude are common.

Single-site observations of the GOIV star ) Boo
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Kjeldsen et al. (1995, AJ, 109, 1313)
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Asteroseismic time series are often affected by low-frequency drifts,
which can be either of instrumental origin or else intrinsic to the
star. These low-frequency drifts introduce a background in the
Fourier domain that ultimately leads to a decrease of the SNR of
the oscillation modes. High-pass filters are widely used to reduce
this effect while preserving the relevant signals.

Let us start by shedding some light on the process of smoothing of
a time series. Smoothing consists in convolving a signal x(t) with
a weighting function w(t):

Xlow(t) = X(t) * W(t) — Xlow(y) = X(V) W(V) ) (2)

where X(v) and W(v) are the transforms of x(t) and w(t),
respectively.
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Conversely, a high-pass filter can be implemented by simply
computing Xnigh(t) =x(t) — Xiow(t):

Xhigh(t) <= Xnign(v) = X(v) [1 = W(v)] . (3)

Typical examples of the weighting function w(t) are a boxcar
function, a triangular function (equivalent to the convolution of
two boxcar functions), and a bell-shaped function (equivalent to
the convolution of four boxcar functions or two triangular
functions). The transform of the boxcar function is the sinc
function and thus leads to an excessive ringing (or Gibbs-like)
effect in the Fourier domain. Multiple-boxcar smoothing is
therefore advisable.
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Non-Fourier periodograms

We begin by estimating the Fourier transform of x(t) based on a
finite number of samples. Suppose there are N evenly spaced
samples x(t,)=x(nAt), with n=0,1,..., N—1. The Discrete
Fourier Transform! (DFT) is defined as:

N-1

Xprr(vp) = D x(ta) € 2™ for v, = p/(NAt), p=0,1,...,N—1.

n=0
(4)
XprT(vp) is the truncated transform of the sampled signal, which
has periodicity 1/At or twice the Nyquist frequency. Then p=0
corresponds to the transform at zero frequency and p=N/2 to the
value at +unyq. Values of p between N/2+1 and N—1 correspond
to the transform for negative frequencies.

!Cooley & Tukey (1965, Math. Comp., 19, 297) introduced the Fast Fourier
Transform (FFT), an efficient method of implementing the DFT.
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Finally, | introduce the one-sided power density spectrum or
power spectrum, P(vg), defined only for nonnegative frequencies
(with ¢=0,1,...,N/2):

At

Pw) = [ Xper (o)
At

Plva) = S [Xorr(@o) + Xoretw—p)?] . (5)
At

Plvny2) = ‘XDFT(VN/2)‘27

where vy o =1/(2At) (|.e., the Nyquist frequency). Based on
Parseval’s theorem, we may then normalize P(v4) according to

ZP vg) Av = N x3(tn). (6)
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According to the Wiener-Khintchine theorem, the power
spectrum and the autocorrelation function, ¢(7), are a Fourier pair:

_ e —i2nmvT - +oo i27uT
(1) = /_ P(v)e dv <= P(v) = 3 o(1)e dr,
(7)

T/2

¢(7):T”L“oo* T/2X(t x(t+7)dt. (8)

The Wiener-Khintchine theorem is absolutely crucial to
understanding the spectral analysis of random processes. It
straightforwardly explains, for instance, why white noise, whose
autocorrelation function is the Dirac delta function, has constant
power spectral density.
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What is the statistics of the power spectrum of a pure noise
signal?

Let x(t) represent a random process from which a finite number of
samples x(t,) are drawn. The samples are assumed to be
independent and identically distributed (i.i.d.), and the process is
further assumed to be stationary, with E [x(t,)]=0 and

E [x(tn)] =03 for all n. The DFT of the set x(t,) may be
decomposed into its real and imaginary parts as:

Xorr(vp) = XBer(vp) +1X5pr(vp)

N-1 N—1
= ) x(t) cos(2mupts) +1 Y x(ta)sin(2mvpts).  (9)
n=0 n=0
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It follows from the Central Limit theorem that, for large N, both
X&ﬂiT and XIIDII%T are normally distributed with

E [X]S{I(;T(VP)} =E [X]ID?‘T(VP)} =0, (10)
E [(XDFT( ))2} E {(XDFT( ))2} = gag. (11)

Finally, since XDFT and XD?T are independent and have the same
normal distribution, the power spectrum, |XDFT| then has by
definition a chi-squared distribution with 2 degrees of freedom

(i.e., X3).
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Adopting | Xppr|? At/N as our normalization of the power
spectrum yields a constant power spectral density for the noise of
o3 At and variance (02 At)?. Consequently, as N tends to infinity
by sampling a longer stretch of data, the variance in the power
spectrum remains unchanged.

Furthermore, the probability density, p(z), that the observed power
spectrum takes a particular value z at a fixed frequency bin is

given by
1 z
p(Z) = <Z> eXp <_ <Z>> ) (12)

where (z) =03 At.
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Equation (12) enables one to derive the probability that the power
in one bin is greater than m times the mean level of the

continuum, (z):
F(m)=e ™. (13)

For instance, a confidence level of 99% or, equivalently, a false
alarm probability of 1%, leads to m~4.6.

For a frequency band containing M bins, the probability that at
least one bin has a normalized power greater than m is then:

Fu(m)=1—-(1—-e ™M, (14)

which approximates to Fy/(m)=Me™™ for e™" < 1.
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Nyquist fﬁampl'\nﬁ thsovem and aliasing

Digital signal processing and spectral analysis

wel s
Power spectrum tics and hypothesis testing
Non-Fourier per grams

Here we apply a test based on the null

hypothesis to the detection of an 1of
unresolved p mode. The solid horizontal
line corresponds to a false alarm 5. 700003

probability of 1% in Eq. (13). According
to Eq. (14), the chance of finding at least
one noise spike within the displayed
window (200 bins wide) above this

$=001

Normalized Power

detection threshhold is of about 87%. , ’ ~ ]
A more conservative approach is to set QJ \ h‘ ‘" ﬂ' MA ’ HW ]
to, say, 10%, the probability of finding at NW \“W/W“M MM fm] |
least one spike within this window, oh | ‘ WM M mﬂ ‘IWIW'W!U“U‘ Y
resulting in a false alarm probability of " g

0.05 % (dashed horizontal line). Campante (2012, PhD thesis)
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In astrophysics it is very common to deal with unevenly sampled
time series. In that event, an existing frequentist statistic known as
the Lomb—Scargle periodogram? is widely used as an estimator
of the power spectral density.

The Lomb—Scargle periodogram can be formulated either as a
modified Fourier analysis or as a least-squares regression of the
data set to sine waves with a range of frequencies. It has the
attractive property of retaining the X% statistics.

2Fast computation of the periodogram is achieved using the algorithm
presented in Press & Rybicki (1989, ApJ, 338, 277), whose trick is to carry out

extirpolation of the data onto a regular mesh and subsequently employ the FFT.
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Astronomers have developed and extensively used a variety of
non-Fourier periodograms for period searches in unevenly spaced
data sets (e.g., Clarke 2002, A&A, 386, 763). The most common
strategy involves folding the data modulo a trial period, computing
a statistic on the folded time series (now a function of phase rather
than time), and plotting the statistic for all independent periods.

These methods measure the strength of signals that are strictly
periodic, but not necessarily sinusoidal in shape. They are also
relatively insensitive to the duration and uneven spacing of the
data set, and some methods readily permit heteroscedastic
weighting from measurement errors.
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Digital signal processing and spectral analysis

Recommended reading

> Aerts, C., Christensen-Dalsgaard, J., & Kurtz, D. W. 2010,
Asteroseismology, 1st ed., Springer

» Appourchaux, T. 2014, in Asteroseismology, 22nd Canary
Islands Winter School of Astrophysics, Cambridge University
Press, eds. P. L. Pallé & C. Esteban, 123

» Campante, T. L. 2012, PhD thesis, Universidade do Porto

» Shumway, R. H. & Stoffer, D. S. 2006, Time Series Analysis
and Its Applications with R Examples, 3rd ed., Springer
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Extracting global asteroseismic parameters

In order to fully characterize a star using asteroseismology, it is
desirable to obtain precise estimates of individual mode parameters
(e.g., frequencies, amplitudes and linewidths). However, this is
only possible for data above a certain SNR.

Global asteroseismic parameters, indicative of the overall stellar
structure, are on the other hand readily extractable using
automated pipelines that are able to incorporate data with a
lower SNR and for which a full peak-bagging analysis is not always
possible. Furthermore, the automated nature of these pipelines is
required if we are to efficiently exploit the plenitude of data made
available by space-based missions.
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Extracting global asteroseismic parameters

In this section | introduce an automated pipeline® designed to
measure global asteroseismic parameters of main-sequence and
subgiant stars from the power spectrum (Campante 2012, PhD
thesis).

The pipeline allows extracting the following information from the
power spectrum (points 1-4 are covered here):
1. Frequency range of the oscillations;
Parameterization of the stellar background signal;
Average large frequency separation, Av;

Frequency of maximum amplitude, vpax;

AR

Maximum mode amplitude, Apax.

3A comparison of different pipelines used to extract global asteroseismic
parameters is presented in Verner et al. (2011, MNRAS, 415, 3539).
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um amplitude (vmax)

Extracting global asteroseismic parameters

We want to look for a frequency range in the power spectrum in
which peaks appear at nearly regular intervals, one of the main
signatures of the presence of solar-like oscillations. | note that the
assumption of quasi-regularity may, however, be too strong in the
case of evolved stars due to the presence of mixed modes.

We thus start by partitioning the power spectrum into overlapping
windows of variable width, w. The width w depends on the central
frequency of the window, Veentral, Used as a proxy for vpax. We
make use of the fact that the width of the p-mode bump roughly
scales with vyax, and so w is defined as w = (Veentral/Vimax,® ) Wo -
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Extracting global asteroseismic parameters

The next step consists in computing the power spectrum of the
power spectrum, PS®PS, for each of these frequency windows.
The presence of prominent features in the PS®PS around the
predicted* values of Av/2, Av/4, and Av/6 (the first, second,
and third harmonics, respectively) is then examined.

An hypothesis test is subsequently applied, whereby the presence of
oscillations in a given window is established if the probability of the
three above features being due to noise is less than 1%. Finally,
the frequency range of the oscillations is determined based on
the overall span of the windows with detected oscillations.

*The predicted value of Av is computed according to the relation
AvoclT 1 (Stello et al. 2009, MNRAS, 400, L80).
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Extracting global asteroseismic parameters

Here | show the detection of o
oscillations in the K2 power
spectrum of a solar-type star. Sets
of vertical gray solid and dashed
lines are separated by the estimated
Av, and mark the spacing on which
we would expect to see modes.

1
)

> (

SD (ppm®uHz

f

W’WM&);M‘AMMMm« AAMMMWWM“~'*‘»*

800 1000 120
Frequency (uHz)

The inset shows the PS®PS,
computed from the region around
Vmax- T he significant peak in the
PS®PS lies at Av/2 and is a
signature of the near-regular spacing
of oscillation peaks.

1400 1600

Chaplin et al. (2015, PASP, 127, 1038)
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Detectability of oscillations
Background signal
Lar; ncy separation (Av)

Extracting global asteroseismic parameters

Fre y of maximum amplitude (vmax)

The model of the stellar background signal is kept simple,
merely containing a granulation component and photon shot noise.
We fit this model to a smoothed version of the power spectrum
employing a nonlinear least-squares fitting algorithm.

The frequency range of the oscillations (if detected) is excluded
from the fitting window. The fitting window starts at 100 uHz to
allow for the decay of any possible activity component,
characterized by considerably longer timescales, and extends all the
way up to the Nyquist frequency of Kepler short-cadence data
(~8300 pHz).
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Detectability of oscillations
Background signal
Lar; ncy separation (Av)

Extracting global asteroseismic parameters - N
ge P Fre y of maximum amplitude (vmax)

The granulation component is represented by a Harvey-like
profile (e.g., Kallinger et al. 2014, A&A, 570, A41) to which an
offset is added representing the shot noise component:

B(v) = By + 772(V) |:]_ + (ZBELa:gran)a] ’ 1o

where Bgran is the height at =0 of the granulation component,
Teran 1S the characteristic turnover timescale and a calibrates the
amount of memory in the process. Such a functional form is
representative of a random non-harmonic field whose
autocorrelation decays exponentially with time. The attenuation
factor n?(v) takes into account the apodization of the oscillation
signal due to the finite integration time.
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Detectability of oscillations
Background signal
Lar; quency separation (Av)
r y of maximum amplitude (vmax)

Extracting global asteroseismic parameters Fre

The top panel displays the smoothed
power spectrum of 16 Cyg A (in
dark red) superimposed on the
original spectrum (in black). The fit
to the background signal (red solid
line) and both its components (red
dashed lines) are also shown.

[ , LGt

Fower Spectral Density (ppmitiz”)

1000
Frequency (uHz)

The bottom panel displays the
PS®PS over the frequency range of
the oscillations. The features at
Av/2 (~52 uHz), Av/4 (~26 uHz) =~ ]
and Av/6 (~17 pHz) are ¥ wﬁﬂ ) | |

20 El 100

conspicuous. ° © e ©

Campante (2012, PhD thesis)
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Large frequency separation (Av)

Extracting global asteroseismic parameters R -
E& P Frequency of maximum amplitude (vmax)

In order to estimate the average large frequency separation,
Av, we compute the PS®PS over the frequency range of the
oscillations. The feature at Av/2 (first harmonic) in the PS®PS is
then located and its power-weighted centroid computed to provide
an estimate of Awv.

The standard deviation of grouped data, given by

VI hx® = (3- hx)2/>°h] /(3. h— 1), is adopted as the error on
Av, meaning that the feature in the PS®PS is interpreted as an
assembly of spectral heights (h) over a number of bins (with
midpoint x).
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Detectability of oscillations
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Extracting global asteroseismic parameters

In order to estimate the frequency of maximum amplitude,
Vmax, We average the p-mode power (after subtraction of the
background fit) over contiguous rectangular windows of width 2Av
and convert to power per radial mode by multiplying by Av/c,
where ¢ measures the effective number of modes per order (see
Kjeldsen et al. 2008, ApJ, 682, 1370).

An estimate of vyax is then given by the power-weighted centroid,

with the associated uncertainty derived from the standard
deviation of grouped data.
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Extracting global asteroseismic parameters

Recommended reading

» Campante, T. L., et al. 2010, MNRAS, 408, 542
» Campante, T. L. 2012, PhD thesis, Universidade do Porto
» Hekker, S., et al. 2010, MNRAS, 402, 2049

» Huber, D., et al. 2009, Communications in Asteroseismology,
160, 74

> Mosser, B. & Appourchaux, T. 2009, A&A, 508, 877
» Verner, G. A., et al. 2011, MNRAS, 415, 3539
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g f a solar-like oscillator
the power spectrum

parameter estimation using MCMC

Peak-bagging

In this section | introduce a Bayesian peak-bagging tool that
employs Markov chain Monte Carlo (MCMC) techniques.
Besides making it possible to incorporate relevant prior
information through Bayes' theorem, this tool also allows
obtaining the marginal probability density function (pdf) for
each of the model parameters.

These techniques are in many ways an extension of the Maximum
Likelihood Estimation (MLE) methods traditionally used in
helioseismology.
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Power spectrum of a solar-like oscillator
Modeling the power spectrum
Bayesian parameter estimation using MCMC

Peak-bagging

Understanding the characteristics of the power spectrum of a
solar-like oscillator is fundamental in order to extract information
on the physics of the modes.

The stochastic driving of a damped oscillator can be described
by
& d Sy(t)=f 16
Y () +2n oy (t) +woy(t) = £(t), (16)
where y(t) is the amplitude of the oscillator, 7 is the linear
damping rate, wg is the frequency of the undamped oscillator and
f(t) is a random forcing function. The Fourier transform of
Eq. (16) is then expressed as

—w? Y(w) —i2nw Y(w) + i Y(w) = F(w). (17)
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Power spectru lar-like oscillator
Modeling the ctrum
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Peak-bagging

When a realization of y(t) is observed for a finite amount of time,
an estimate of the power spectrum is then given by
2

|[F(w)]

(wg — w?)? +4n2w?’ (18)

In the limit of taking the average of an infinite number of
realizations, and assuming the damping rate to be very small
compared to the frequency of oscillation, one obtains near the
resonance the following expression for the limit spectrum:

1 Pr(w
(Pw)) =~ 4wl (w —< aio()z)i n?’

(19)

The average power spectrum of the random forcing function,
(Pf(w)), is a slowly-varying function of frequency. The result is
thus a Lorentzian profile, characterized by the central frequency

wp and a width determined by the linear damping rate 7.
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Power spectrum of a solar-like oscillator
Modeling the power spectrum

Bayesian parameter estimation using

Peak-bagging

Panels (a) and (b) display two
realizations of the same limit spectrum.
Both power spectra appear as an erratic
function concealing the underlying
Lorentzian profile.

Panel (c) displays a realization of the
same limit spectrum, although with a
resolution twenty times higher.
Increasing the total observational span,
hence the resolution, did nothing to “I
reduce the erratic behavior.

Power

1e 14

Frequency

Panel (d) displays the average of a large
number of realizations with the same
resolution as in (c).

Anderson et al. (1990, ApJ, 364, 699)
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We are primarily interested in performing a global fit to the power
spectrum, whereby the observed modes are fitted simultaneously
over a broad frequency range.

We thus model the limit oscillation spectrum as a sum of standard
Lorentzian profiles, O(v), which sit atop a background signal
described by B(v):

P(v;A) = O(v) + B(v)

i .
-y % Cimli)hi gy (20)

! m=—I1+ [72(y_y"/10_mys)

n’Im

where X represents the set of model parameters.
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Shown below is the power spectrum of HD 49933 (blue) based on
180 days of CoRoT photometry. The best-fitting model (red) is
overlaid, with the shaded areas indicating the ranges of the
uniform priors on the mode frequencies.
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Handberg & Campante (2011, A&A, 527, A56)
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At a given frequency bin j, the probability density, f(Pj; A), that
the observed power spectrum takes a particular value P; is related
to the limit spectrum, P(vj; A), by (cf. Eq. 12):

1 P;
f(PiA) = =——= -t 21
(P %) Prin) *F { P(VJ?A)] @)
We now want to specify the likelihood function, i.e., the joint pdf
of the data sample {P;}. Assuming the frequency bins to be
uncorrelated, the joint pdf is simply given by the product of
f(Pj; A) over some frequency interval of interest spanned by j:

L) =] fPiN). (22)
J
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Bayes' theorem

| now describe the formalism of a Bayesian approach to parameter
estimation and model comparison that employs an MCMC
algorithm.

Let us consider a set of competing hypotheses, {H;}, assumed to
be mutually exclusive. One should be able to assign a probability,
p(H;|D, 1), to each hypothesis, taking into account the observed
data, D, and any available prior information, /. This is done
through Bayes’ theorem:

Hill)p(D|H:, 1)

o Pl

(23)
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Bayes' theorem (cont.)

The probability of the hypothesis H; in the absence of D is called
the prior probability, p(H;|l), whereas the probability including D
is called the posterior probability, p(H;|D, ). The quantity
p(D|H;, 1) is called the likelihood of H;. The denominator p(D|/)
is the global likelihood for the entire class of hypotheses.

The sum of the posterior probabilities over the hypothesis space of
interest is unity, hence one has:

p(DI1) = 3" p(Hi|1)p(D|Hi, 1) (24)

1
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Parameter estimation

If a particular hypothesis, i.e., a given model M describing the
physical process, is assumed true, then the hypothesis space of
interest concerns the values taken by the model parameters, A.
These parameters are continuous and one will be interested in
obtaining their pdf.

The global likelihood of model M is then given by the continuous
counterpart of Eq. (24):

p(DI1) = [ PAINB(DIA. NdA. (25)
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Parameter estimation (cont.)
We restate Bayes' theorem to account for this new formalism:

p(ANp(DIA, 1)
p(DI)

where p(D|l) plays the role of a normalization constant.

p(A|D, 1) = (26)

Ultimately, we are interested in using MCMC techniques to map
the posterior pdf, p(A|D, /). The procedure of marginalization
allows computation of the posterior pdf for a subset of parameters
Aa by integrating over the remaining parameters (or nuisance
parameters) Ag:

P(MAID.1) = [ p(Aa AelD. Nde (27)
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Model comparison

The problem of model comparison is analogous to that of
parameter estimation. When facing a situation in which several
parameterized models are available for describing the same physical
process, one expects Bayes' theorem to allow for a statistical
comparison between such models.

Bayesian model comparison has a built-in Occam’s razor by which
a complex model is automatically penalized, unless the available
data justify its additional complexity.

Competing models may be either intrinsically different models or
else similar but with varying number of parameters (i.e., nested
models), or even the same model with different priors affecting its
parameters.
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Model comparison (cont.)

Given two or more competing models and our prior information, /,
being in the present context that one and only one of the models is
true, we can assign individual probabilities similarly to what has
been done in Eq. (23), after replacing H; by M;:
p(Mi|l)p(D|M;, 1)
p(M;|D, 1) = , 28
(MD, 1) o (28)
where the global likelihood of model M;, p(D|M;, 1), also called
the evidence of the model, is given by Eq. (25).
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Model comparison (cont.)

We are often interested in computing the ratio of the probabilities
of two competing models:
_ p(MiD, 1) _ p(Mill)p(DIM;, 1) _ p(Mi|l)

0; = - - By.
I p(M;1D, 1) ~ p(M;|1)p(DIM;, 1) ~ p(M[1)"

(29)

where Oj; is the odds ratio in favor of model M; over model M;,
Bjj is the so-called Bayes’ factor and p(M;|l)/p(M;|l) is the prior
odds ratio. The Bayesian odds ratio is the product of the ratio of
the prior probabilities of the models and the ratio of their global
likelihoods.
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Markov chain Monte Carlo

The need becomes clear for a mathematical tool that is able to
efficiently evaluate the multidimensional integrals required in the
computation of the marginal distributions.

The aim is to draw samples from the target distribution,

p(A|D, 1), by constructing a pseudo-random walk in parameter
space such that the number of samples drawn from a particular
region is proportional to its posterior density. This is achieved by
generating a Markov chain, whereby a new sample, A;;1, depends
on the previous sample, A, according to a time-independent
quantity called the transition kernel, p(A;y1|A;). After a burn-in
phase, p(A¢11|A¢) should be able to generate samples of A with a
probability density converging on the target distribution.
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Markov chain Monte Carlo (cont.)

We generate a Markov chain by using the Metropolis—Hastings
algorithm. Let us denote the current sample by A;. We would like
to steer the Markov chain toward the next sampling state, A¢y1,
by first proposing a new sample, &, to be drawn from a proposal
distribution, g(&|\¢), that can have almost any form. The
proposed sample is then accepted with a probability given by:

T ED) a(Aé)
e &) =min ) =min 1D aex 0 O

where a(A¢, €) is the acceptance probability and r is called the
Metropolis ratio. If £ is not accepted, then the chain will keep
the current sampling state, i.e., App1=A:.
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Markov chain Monte Carlo (cont.)

Once the posterior pdf, p(A|D, 1), has been mapped, the procedure
of marginalization becomes trivial. The marginal posterior
distribution of a given parameter A\, p(A|D, I), is then simply
obtained by collecting its samples in a normalized histogram. An
estimate of the k-th moment of X\ about the origin is then given by

Ay = /Akp(MD, NdX ~ %ZA?, (31)

where N is the total number of samples.
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Markov chain Monte Carlo (cont.)

Shown here are the results from a
two-dimensional MCMC simulation
of a double peaked posterior.

o
o

(c)

Panel (a) shows a sequence of 7950 =
samples from the MCMC. Panel (b) =
shows the same points with contours
of the posterior overlaid. Panel (c)
shows a comparison of the marginal
posterior (solid curve) for X; and the
MCMC marginal (dots). Panel (d)
shows a comparison of the marginal S ‘ ‘
posterior (solid curve) for Xz and the =™ *"Siatte Comiige Unversty press)
MCMC marginal (dots).
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Parallel tempering

The basic Metropolis—Hastings algorithm runs a risk of becoming
stuck in a local mode of the target distribution. A way of
overcoming this is to employ parallel tempering, whereby a
discrete set of progressively flatter versions of the target
distribution is created by introducing a tempering parameter, .
We modify Eq. (26) to generate the tempered distributions:

p(AID,~, 1) o< p(A|Np(DIA, 1), 0<~<1. (32)

For v=1, we retrieve the target distribution, while distributions
with v <1 are effectively flatter versions of the target distribution.
By running such a set of chains in parallel and allowing the swap of
their parameter states, we increase the mixing properties of the
Markov chain.
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The need for automation

The Metropolis—Hastings algorithm can also be refined by
implementing a statistical control system allowing to automatically
fine-tune the proposal distribution during the burn-in phase.

Handberg & Campante (2011, A&A, 527, A56)

5 4 8 -2 -1 0 {1 2 8 4
N

59 /60



ike oscillator

on using MCMC

Peak-bagging

Recommended reading

» Appourchaux, T., et al. 2012, A&A, 543, Ab4

» Campante, T. L. 2012, PhD thesis, Universidade do Porto
» Campante, T. L., et al. 2016, ApJ, 819, 85

» Corsaro, E. & De Ridder, J. 2014, A&A, 571, A71

» Davies, G. R,, et al. 2016, MNRAS, 456, 2183

» Gregory, P. C. 2005, Bayesian Logical Data Analysis for the
Physical Sciences: A Comparative Approach with
‘Mathematica’ Support, 1st ed.,Cambridge University Press

» Handberg, R. & Campante, T. L. 2011, A&A, 527, A56

60 /60



	Introduction
	Digital signal processing and spectral analysis
	Nyquist sampling theorem and aliasing
	Time-domain filtering
	Power spectral density estimation
	Power spectrum statistics and hypothesis testing
	Non-Fourier periodograms

	Extracting global asteroseismic parameters
	Detectability of oscillations
	Background signal
	Large frequency separation ()
	Frequency of maximum amplitude (max)

	Peak-bagging
	Power spectrum of a solar-like oscillator
	Modeling the power spectrum
	Bayesian parameter estimation using MCMC


