
Introduction The forward problem Inversion techniques Conclusion

Stellar Inversion Techniques

D. R. Reese

LESIA, Paris Observatory

July 21, 2016

D. R. Reese Stellar Inversion Techniques



Introduction The forward problem Inversion techniques Conclusion

My CV

2006: obtained PhD in Toulouse

2006-2015: 4 postdocs
Sheffield: supervisor = M. J. Thompson
Meudon (near Paris)
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Forward and inverse problems

Forward problem

start from a set of physical causes, and deduce the results

examples:
deduce earth’s gravity field from the distribution of matter in the earth
calculate the distorted image of an object through a given optical system

Inverse problem

deduces causes from a given set of results (which are typically
observations)

examples:
deduce the distribution of matter in the earth based on the measured
gravitational field
removing optical distortion to find the true geometrical shape of an object
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Helio- and asteroseismology

Stellar
structure

Oscillation
frequencies

Forward

Inverse

Forward problem

requires stellar evolution code or model + stellar oscillations code

in general, non-linear relation between structure and oscillation frequencies

see “Theory of Stellar Oscillations” lecture by M. Cunha (CA2)

Inverse problem

in general, non-linear problem

variety of different approaches
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Different approaches for solving the inverse problem

according to Gough (1985) there are 3 ways of inverting helioseismic data:
1 repeated “execution of the forward problem” (i.e. search in parameter

space, or “forward modelling”)
2 analytical methods (asymptotic methods, glitch fitting)
3 formal inversion techniques

this also applies to asteroseismology. However:

greater uncertainties on “classical parameters” (Teff , [Fe/H], L, v sin i ...)
fewer number of available frequencies
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Comparison between different approaches

Forward modelling

description: search for optimal model in a restricted parameter space

advantages: simplicity, physically coherent models

see AIMS tutorial by M. Lund and D. Reese (TA2)

Inversion techniques

description: adjust the structure of a reference model so as to match the
observed frequencies

advantages: extracts more information from frequencies, open to new
physics

Comparison

the two approaches are in fact complementary:
the direct approach can provide an initial model for an inverse method
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Adiabatic pulsation equations

Euler’s equation

∂2~ξ

∂t2
= −

~∇p′

ρ0
+
ρ′~g0

ρ0
− ~∇Ψ′

continuity equation
ρ′ + ~ξ · ~∇ρ0 + ρ0

~∇ · ~ξ = 0

adiabatic relation

p′ − c2
0ρ
′ = ~ξ ·

(
c2

0
~∇ρ0 − ~∇P0

)
Poisson’s equation

∆Ψ′ = 4πGρ′

variables with a “0” subscript are equilibrium quantities

variables with a prime (′) are Eulerian perturbations

~ξ denotes the Lagrangian displacement
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Adiabatic pulsation equations

the last three equations along with appropriate boundary conditions,
enable us to express ρ′, p′, and Ψ′ in terms of ~ξ:

ρ′ = −~ξ · ~∇ρ0 − ρ0
~∇ · ~ξ

p′ = −c2
0ρ0

~∇ · ~ξ − ξ · ~∇P0

Ψ′(~r) = −
∫∫∫

V

Gρ′(~r ′)

‖~r −~r ′‖dV

The above equations can also be applied, even if ~ξ is not an eigenmode,
thereby leading to a set of variables (~ξ, ρ′, p′,Ψ′) which we shall call a
“partial solution”.

To obtain a full solution, Euler’s equation (along with suitable boundary
conditions) still needs to be applied.
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Adiabatic pulsation equations

substituting the above expressions for p′, ρ′ and Ψ′ into Euler’s equation
then leads to the following schematic equation:

ω2~ξ = F(~ξ)

where:
F is an integro-differential operator that depends on stellar structure

we’ve assumed ~ξ ∝ exp(−iωt) (hence, ∂
~ξ
∂t
≡ −iω~ξ)

this equation is an eigenvalue problem, the solutions of which are known
as “eigensolutions”. These contain two parts:

the eigenvalue, ω2, i.e. the square of the pulsation frequency

the eigenfunction or eigenmode, ~ξ
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Non-linear aspects

the above equation is non-linear
need to linearise it, in order to apply seismic inversions:

(δω2)~ξ + ω2(δ~ξ) = δF(~ξ) + F(δ~ξ)

beware: here, “δ” is not a Lagrangian perturbation, but rather a
modification of the model and its pulsations

the above linearised equations would have to be solved numerically which
could get complicated fairly quickly

however, this can be greatly simplified thanks to the fact that the operator
F is symmetric
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Symmetry of the pulsation equations

A dot product

in order to define what “symmetry” means in this context, we introduce
the following dot product:〈

~η, ~ξ
〉

=

∫
V

ρ0~η
∗ · ~ξdV

where:
~η∗ is the complex conjugate of ~η
V is the stellar volume

NOTE: this is a complex dot product, hence
〈
~η, ~ξ
〉

=
〈
~ξ, ~η
〉∗

Definition

the adiabatic pulsation equations are symmetric with respect to the above
dot product: 〈

~η,F(~ξ)
〉

=
〈
F(~η), ~ξ

〉
for any displacement fields ~η, ~ξ
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Symmetry of the pulsation equations

Definition

in order to prove the symmetry of the pulsation equations, we introduce
two partial solutions:

(~ξ, p′,Ψ′) (~η, π′,Φ′)

we calculate the following dot product:〈
~η,F(~ξ)

〉
after various manipulations (integration by parts etc.), this leads to the
following formula:〈

~η,F(~ξ)
〉

=

∫
V

(π′)∗p′

ρ0c2
0

dV +

∫
V

ρ0N2
0η
∗
r ξrdV

+

∫
S

ρ0g0η
∗
r ξrdS − 1

4πG

∫
V∞

~∇(Φ′)∗ · ~∇Ψ′dV

the above form is symmetric
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Symmetry of the pulsation equations

Consequence 1 - ω2 is real

the pulsation equations are written as:

ω2~ξ = F(~ξ)

taking the dot product with ~ξ on both sides of the equation, and isolating
ω2 leads to:

ω2 =

〈
~ξ,F(~ξ)

〉
〈
~ξ, ~ξ
〉

the denominator is real and strictly positive

the numerator is real. This can be seen by taking its complex conjugate
and showing it is equal to the original expression:〈

~ξ,F(~ξ)
〉∗

=
〈
F(~ξ), ~ξ

〉
=
〈
~ξ,F(~ξ)

〉
note: the first equality comes from the definition of the dot product,
whereas the second equality comes from the symmetry of F
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Symmetry of the pulsation equations

Consequence 2 – orthogonality of the eigenmodes

eigenmodes with distinct eigenvalues are orthogonal

ω2
1
~ξ1 = F(~ξ1)

ω2
2
~ξ2 = F(~ξ2)

ω2
1

〈
~ξ2, ~ξ1

〉
=

〈
~ξ2,F(~ξ1)

〉
=
〈
F(~ξ2), ~ξ1

〉
= ω2

2

〈
~ξ2, ~ξ1

〉
this can be re-expressed as:

(ω2
1 − ω2

2)
〈
~ξ2, ~ξ1

〉
= 0

hence, either ω2
1 = ω2

2 or
〈
~ξ2, ~ξ1

〉
= 0
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Symmetry of the pulsation equations

Consequence 3 – variational principle

let us define a variational frequency as follows:

ω2
var =

〈
~ξ,F(~ξ)

〉
〈
~ξ, ~ξ
〉

according to the variational principle,

A small error on an eigenfunction, δ~ξ, leads to a 2nd (or higher) order
modification of ωvar

in practise, the variational principle is used to check the accuracy of the
frequencies through a comparison of ω and ωvar (see, e.g., ADIPLS code)
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Perturbing the the pulsation equations

we now return to our perturbed pulsation equations:

(δω2)~ξ + ω2(δ~ξ) = δF(~ξ) + F(δ~ξ)

taking the dot product between this equation and ~ξ yields:

δω2
〈
~ξ, ~ξ
〉

+ ω2
〈
~ξ, δ~ξ

〉
=
〈
~ξ, δF(~ξ)

〉
+
〈
~ξ,F(δ~ξ)

〉
grouping terms with δ~ξ yields:

δω2
〈
~ξ, ~ξ
〉
−
〈
~ξ, δF(~ξ)

〉
= −ω2

〈
~ξ, δ~ξ

〉
+
〈
~ξ,F(δ~ξ)

〉
= −ω2

〈
~ξ, δ~ξ

〉
+
〈
F(~ξ), δ~ξ

〉
=

〈
−ω2~ξ, δ~ξ

〉
+
〈
F(~ξ), δ~ξ

〉
=

〈
−ω2~ξ + F(~ξ), δ~ξ

〉
= 0

the right-hand side vanishes because ~ξ is an eigenmode, and ω2 its
associated eigenvalue.
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Perturbing the the pulsation equations

isolating δω2 then yields

δ(ω2) = 2ωδω =

〈
~ξ, δF(~ξ)

〉
〈
~ξ, ~ξ
〉

this last form is extremely useful because it relates modifications of the

pulsation frequency to changes in the stellar model, without needing δ~ξ
hence, frequency modifications are directly related to perturbations of the
stellar model
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What types of perturbations?

rotation
1D case: Ω ≡ Ω(r)
2D case: Ω ≡ Ω(r , θ)

structural (ρ0 + δρ0, c
2
0 + δc2

0 , Γ1,0 + δΓ1,0...)
1D case
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Rotation

rotation introduces the following effects:
centrifugal distortion – this leads to 2nd order effects which will be neglected
Coriolis force – first order effects on frequencies

Euler’s equation revisited:

d2~ξ

dt2
+ ~ξ · ~∇

(
~v0 · ~∇~v0

)
= −

~∇p′

ρ0
+
ρ′~geff

ρ0
− ~∇Ψ′

where d~ξ
dt
≡ ∂~ξ

∂t
+ ~v0 · ~∇~ξ and ~v0 = sΩ~eφ

neglecting terms ∝ Ω2 and doing various simplifications leads to:

−ω2~ξ = −2ωmΩ~ξ + 2iω~Ω× ~ξ −
~∇p′

ρ0
+
ρ′~g0

ρ0
− ~∇Ψ′

where we’ve used ~ξ ∝ exp(−iωt + imφ)

from this we deduce:

δF(~ξ) = 2ωmΩ~ξ − 2iω~Ω× ~ξ

D. R. Reese Stellar Inversion Techniques
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Rotation

the frequency shift is then:

δω =
1

2ω

〈
~ξ, δF(~ξ)

〉
〈
~ξ, ~ξ
〉

=
1

2ω

∫
V
ρ0
~ξ∗ ·

(
2ωmΩ~ξ − 2iω~Ω× ~ξ

)
dV∫

V
ρ0‖~ξ‖2dV

= m

∫
V
ρ0Ω‖~ξ‖2dV∫

V
ρ0‖~ξ‖2dV

− i

∫
V
ρ0
~Ω ·
(
~ξ × ~ξ∗

)
dV∫

V
ρ0‖~ξ‖2dV

= m

∫
V
ρ0Ω‖~ξ‖2dV∫

V
ρ0‖~ξ‖2dV︸ ︷︷ ︸

advection

+2

∫
V
ρ0
~Ω ·
[
=(~ξ)×<(~ξ)

]
dV∫

V
ρ0‖~ξ‖2dV︸ ︷︷ ︸

Coriolis
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Rotation – 1D case

in the 1D case, this becomes:

δω = m

∫ R

0

K n`
Ω (r)Ω(r)dR

where:

K n`
Ω =

ρ0r 2
(
ξ2 + `(`+ 1)η2 − 2ξη − η2

)∫ R

r=0
ρ0(r) (ξ2 + `(`+ 1)η2) r 2dr

~ξ = ξY `
m~er + η

(
∂Y `

m

∂θ
~eθ +

1

sin θ

∂Y `
m

∂ϕ
~eφ

)
` = harmonic degree

K n`
Ω is known as the rotation kernel

this expression yields a uniform splitting

D. R. Reese Stellar Inversion Techniques
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Examples of 1D rotation kernels

(n, `) = (13, 1) (n, `) = (13, 3)
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Examples of 1D rotation kernels

(n, `) = (10, 10) (n, `) = (10, 20)
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Link with Ledoux constant

if Ω is constant, the previous expression simplifies a bit further:

δω = m(1− C)Ω

where

C =

∫ R

r=0
ρ0

(
2ξη + η2

)
r 2dr∫ R

r=0
ρ0(r) (ξ2 + `(`+ 1)η2) r 2dr

C is the Ledoux constant (see Ledoux 1951)

hence, to first order the frequencies of a uniformly rotating star are:

ωn`m ' ω0
n` + m(1− C)Ω

D. R. Reese Stellar Inversion Techniques
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Rotation – 2D case

in the 2D case, this becomes:

δωn, `,m = ωn, `,m − ωn, `, 0 =

∫ R

0

∫ π

0

Kn, `,mΩ(r , θ)rdrdθ

where:

Kn, `,m = m

2πrρ0 sin θ

{
ξ2|Y `

m|2 + η2

[∣∣∣ ∂Ym
`

∂θ

∣∣∣2 +
m2|Y `

m|
2

sin2 θ

]
− 2ξη|Y `

m|2 − 2η2<
[

cos θ
sin θ

∂Ym
`

∂θ

(
Y `

m

)?]}
∫ R

0
ρ0 (ξ2 + `(`+ 1)η2) r 2dr

this time, the splitting may be non-uniform
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Examples of 2D rotation kernels

(n, `,m) = (13, 1, 1) (n, `,m) = (13, 3, 1) (n, `,m) = (13, 3, 3)

(n, `,m) = (8, 20, 1) (n, `,m) = (8, 20, 10) (n, `,m) = (8, 20, 20)
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Structural kernels

the acoustic structure of stars is typically determined by two variables, e.g.
(ρ0, Γ1,0)

accordingly, when modifying the structure of the star, the modifications to
two structural quantities need to be specified, e.g. (δρ0, δΓ1,0)
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Structural kernels

after a (very) lengthy derivation, one can show that:

δω

ω
=

∫ R

r=0

[
Kc2,ρ(r)

δc2
0 (r)

c2
0 (r)

+ Kρ,c2 (r)
δρ0(r)

ρ0(r)

]
dr

where:

Kc2,ρ =
ρ0c2

0χ
2r 2

2Iω2

Kρ,c2 =
ρ0r 2

2Iω2

{
c2

0χ
2 − ω2

(
ξ2 + `(`+ 1)η2

)
− 2g0ξχ− 4πG

∫ R

s=r

(
2ρ0ξχ+

dρ0

ds
ξ2

)
ds

+2g0ξ
dξ

dr
+ 4πGρ0ξ

2 + 2

(
ξ
dψ

dr
+
`(`+ 1)ηψ

r

)}
I =

∫ R

0

ρ0

(
ξ2 + `(`+ 1)η2

)
r 2dr

χ =
~∇ · ~ξ
Y `

m
=

dξ

dr
+

2ξ

r
− `(`+ 1)η

r

ρ = −dρ0

dr
ξ − ρ0χ

ψ = − 4πG

2`+ 1

[∫ r

s=0

ρ(s)
s`+2

r `+1
ds +

∫ R

s=r

ρ(s)
r `

s`−1
ds

]
dψ

dr
= − 4πG

2`+ 1

[
−(`+ 1)

∫ r

s=0

ρ(s)
s`+2

r `+2
ds + `

∫ R

s=r

ρ(s)
r `−1

s`−1
ds

]
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Examples of (ρ0, c
2
0 ) kernels

(n, `) = (13, 1)
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Examples of (ρ0, c
2
0 ) kernels

(n, `) = (13, 3)
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Examples of (ρ0, c
2
0 ) kernels

(n, `) = (10, 10)
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Examples of (ρ0, c
2
0 ) kernels

(n, `) = (10, 20)
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Structural kernels

It is possible to obtain kernels for other structural pairs

For instance (ρ0, Γ1,0) kernels can be deduced from the (ρ0, c
2
0 ) kernels,

thanks to the following relation:

δω

ω
=

∫ R

r=0

[
Kc2,ρ(r)

δc2
0 (r)

c2
0 (r)

+ Kρ,c2 (r)
δρ0(r)

ρ0(r)

]
dr

=

∫ R

0

[
KΓ1,ρ(r)

δΓ1,0(r)

Γ1,0(r)
+ Kρ,Γ1 (r)

δρ0(r)

ρ0(r)

]
dr

along with the perturbed expression for hydrostatic equilibrium

after various permutations of integrals, the following expressions are
obtained:

KΓ1,ρ = Kc2,ρ =
ρ0c2

0χ
2r 2

2Iω2

Kρ,Γ1 = Kρ,c2 − Kc2,ρ +
Gmρ0

r 2

∫ r

s=0

Kc2,ρ(s)

p0(s)
ds + ρ0r 2

∫ R

s=r

4πGρ0

s2

(∫ s

t=0

Kc2,ρ(t)

p0(t)
dt

)
ds

= Kρ,c2 − Kc2,ρ +
Gmρ0

r 2

∫ r

s=0

Γ1,0χ
2s2

2Iω2
ds + ρ0r 2

∫ R

s=r

4πGρ0

s2

(∫ s

t=0

Γ1,0χ
2t2

2Iω2
dt

)
ds

D. R. Reese Stellar Inversion Techniques
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Examples of (ρ0, Γ1,0) kernels

(n, `) = (13, 1)
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Examples of (ρ0, Γ1,0) kernels
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Examples of (ρ0, Γ1,0) kernels

(n, `) = (10, 10)
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Examples of (ρ0, Γ1,0) kernels

(n, `) = (10, 20)
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Other structural kernels

other structural kernels an be obtained:
(u ≡ P

ρ
, Γ1), (g , Γ1), (P, Γ1), (u,Y ), (A, Γ1), (N2, c2) etc. (see Masters

1979, Gough & Thompson, 1991, Elliott, 1996, Basu &
Christensen-Dalsgaard, 1997, Kosovichev, 1999, Buldgen et al., in prep)
some of these require the equation of state and its derivatives
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Classification of inversion techniques

Inversion
methods

Linear Non-linear

RLS OLA Non-linear
RLS

Differential
response
inversion

MOLA SOLA

D. R. Reese Stellar Inversion Techniques
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What can be inverted

rotation profile

structural profiles

integrated quantities

D. R. Reese Stellar Inversion Techniques
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Rotation inversions

The linearised inversion problem

Sn1,`1 =
νn1,`1,m1 − νn1,`1,0

m1
=

∫ R

0

K n1,`1
Ω (r)Ω(r)dr + εn1,`1

Sn2,`2 =
νn2,`2,m2 − νn2,`2,0

m2
=

∫ R

0

K n2,`2
Ω (r)Ω(r)dr + εn2,`2

Sn3,`3 =
νn3,`3,m3 − νn3,`3,0

m3
=

∫ R

0

K n3,`3
Ω (r)Ω(r)dr + εn3,`3

...

where:

Sn,` = are the “rotational splittings” = the observations

Ω(r) = the rotation profile = the unknown

εn,` = observational error realisations (〈εn,`〉 = σn,`)

Note: in what follows, we will use the index “l” as shorthand for (n, `).
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Rotation inversions

Goal

Sl︸︷︷︸
obs.

=

∫ R

0

K l
Ω(r)︸ ︷︷ ︸

known

Ω(r)︸︷︷︸
unknown

dr + εl

Find Ω(r) from the Sl , i.e. invert above integral relations

at first look, this problem looks impossible:
the unknown is a function
only a finite number of observations/constraints
problem is ill-posed (as we will see later on)

the solution to the above problems involves injecting a priori assumptions
accordingly, we should always bear in mind these limitations when looking
at inversion results
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Rotation inversions

A first approach

write solution in terms of basis functions:

Ωinv(r) =
∑
k

akφk(r)

where ak are unknown coefficients, and φk basis functions

typical choices for φk include b-splines functions of various degrees
degree=0: step-wise function
degree=1: “connect-the-dots” function
degree=3: cubic b-spline function
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“Connect-the-dots” function (degree=1)
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Cubic b-spline function (degree=3)
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Least-squares approach

A first approach

substitute above expression into kernel expression:

S̃l =

∫ R

0

K l
Ω(r)Ωinv(r)dr

minimise distance between Sl and S̃l :

min J(ak) =
∑
l

(
Sl − S̃l

)2

σ2
l

a least squares solution is obtained by solving ~∇J = ~0:∑
l

Sl

σ2
l

∫ R

0

K l
Ω(r)φk(r)dr =

∑
k′

[∑
l

1

σ2
l

∫ R

0

K l
Ω(r)φk(r)dr

∫ R

0

K l
Ω(r)φk′(r)dr

]
ak′
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Least-squares approach – an inversion result

there are 830 rotational splittings

Ωinv is described using 50 b-splines

D. R. Reese Stellar Inversion Techniques



Introduction The forward problem Inversion techniques Conclusion

Regularised Least-Squares approach (RLS)

clearly the above approach produced a very poor solution
such inversion problems are usually ill-conditioned (= high sensitivity to
noise)

one remedy is to “regularise” the solution. This can be done by
introducing a supplementary term to the cost function:

J(ak) =
∑
l

(
Sl − S̃l

)2

σ2
l

+ Λ

〈
1

σ2

〉∫ R

0

(
d2Ωinv

dr 2

)2

dr

where
〈

1
σ2

〉
= 1

L

∑
l

1
σ2
l

Λ is a regularisation parameter:
small values of Λ = less regularisation, but closer fit to Sl
large values of Λ = more regularisation, but worse fit to Sl
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Regularised Least-Squares approach (RLS)

solving ~∇J = ~0 leads to the following set of equations:

∑
l

Sl

σ2
l

∫ R

0

K l
Ω(r)φk(r)dr =

∑
k′

[∑
l

1

σ2
l

∫ R

0

K l
Ω(r)φk(r)dr

∫ R

0

K l
Ω(r)φk′(r)dr

+ Λ

〈
1

σ2

〉∫ R

0

d2φk

dr 2

d2φk′

dr 2
dr

]
ak′
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Regularised Least-Squares approach (RLS) – an inversion result

Λ = 10−13
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Regularised Least-Squares approach (RLS) – an inversion result

Λ = 10−8
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Regularised Least-Squares approach (RLS) – an inversion result

Λ = 10−3
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Regularised Least-Squares approach (RLS) – an inversion result

Λopt. = 10−8
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Error propagation

let r0 be a given grid point

the relationship between Ωinv(r0) and ak is linear:

Ωinv(r0) =
∑
k

akφk(r0)

furthermore, the relationship between the ak and the Sl is linear

hence, the relationship between Ωinv(r0) and the Sl is linear. This
relationship is expressed as follows:

Ωinv(r0) =
∑
l

cl(r0)Sl
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Error propagation

assuming the errors, εl , are uncorrelated, then the error bar on Ωinv(r0) is:

σΩ(r0) =

√∑
l

(clσl)2

This only takes into account how the observational errors propagate
through the inversion. It doesn’t take into account

poorly adjusted averaging kernels
departures from linearity
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Error propagation

Λ = 10−8
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Error magnification

if the the error bars are uniform, σl ≡ σ, the propagated error becomes:

σΩ(r0) =

√∑
l

(clσ)2 = σ

√∑
l

(cl)2

the quantity
√∑

l(cl)2 is known as the error magnification
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Averaging kernel

we recall the linear relation between Sl and Ωinv(r0):

Ωinv(r0) =
∑
l

cl(r0)Sl

we replace Sl by its kernel-based expression:

Ωinv(r0) =
∑
l

cl(r0)

[∫ R

0

K l
Ω(r)Ω(r)dr + εl

]

=

∫ R

0

∑
l

cl(r0)K l
Ω(r)︸ ︷︷ ︸

Kavg(r0,r)

Ω(r)dr +
∑
l

cl(r0)εl

This expression shows that Ωinv(r0) is in fact an average of the true
rotation profile Ω(r). The corresponding weight function, Kavg(r0, r), is
the known as the averaging kernel.
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Averaging kernels

r0 = 0.3171R
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Averaging kernels

r0 = 0.5578R
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Averaging kernels

r0 = 0.7652R
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Optimally Localised Averages (OLA)

Goal: optimise the averaging kernels

two variants:
MOLA: Multiplicative OLA
SOLA: Subtractive OLA
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MOLA – Multiplicative OLA

reference: Backus & Gilbert (1968)

J(cl (r0)) =

∫ R

0
P(r0, r) [Kavg(r0, r)]2dr︸ ︷︷ ︸

fit data

+
tan θ

〈σ2〉

L∑
l=1

(clσl )
2

︸ ︷︷ ︸
regularisation

+λ

{
1−

∫ R

0
Kavg

}
︸ ︷︷ ︸
Kavg unimodular

where:

〈
σ2
〉

=
1

L

L∑
l=1

σ2
l

θ = trade-off parameter between fitting data and reducing error,

P(r0, r) = penalty function (usually 12(r − r0)2)

λ = Lagrangian multiplier used to ensure

∫ R

0

Kavg(r0, r)dr = 1
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MOLA inversion result

θ = 10−2
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MOLA averaging kernel

r0 = 0.5578
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SOLA – Subtractive OLA

references: Pijpers & Thompson (1992, 1994)

J(cl (r0)) =

∫ R

0

[
T (r0, r)︸ ︷︷ ︸
target

−Kavg(r0, r)
]2
dr +

tan θ

〈σ2〉

L∑
l=1

(clσl )
2

︸ ︷︷ ︸
regularisation

+λ

{
1−

∫ R

0
Kavg

}
︸ ︷︷ ︸
Kavg unimodular

where:

θ = trade-off parameter between fitting data and reducing error,

and which can be adjusted by the user

T (r0, r) = a target function

λ = Lagrangian multiplier used to ensure

∫ R

0

Kavg(r0, r)dr = 1
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SOLA – the target function

ideally, the target function should be a Dirac function

however, this is impossible with the limited number of kernels, and would
lead to poor numerical results

a Gaussian function is therefore typically chosen:

T (r0, r) =
1

A
exp

(
− (r − r0)2

2∆(r0)2

)
where

A = normalisation constant

∆(r0) = a function which gives the target width

a good choice for ∆(r0) when dealing with acoustic modes is (e.g.
Thompson 1993):

∆(r0) ∝ c0(r0)
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SOLA inversion result

θ = 10−2, δ = 7× 10−2
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SOLA averaging kernel

r0 = 0.5578
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Comparison between MOLA and SOLA

MOLA – advantages

no width parameter to adjust

can yield better results

SOLA – advantages

less computationally expensive (1 matrix inversion for complete inversion)

lends itself to inverting integrated quantities (see following slides)
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Comparison of different inversion methods

RLS SOLA MOLA

it is important to compare different inversion methods to extract robust
features
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Rotation inversions in a sub-giant

�H�607��������������������������H�130%

/-'��������

Rotation profile of a sub-giant
(Deheuvels et al., 2012)
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2D rotation inversions in the sun

The solar rotation profile
(Schou et al., 1998, see also Thompson et al., 2003)
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Examples of 2D averaging kernels

(adapted from Schou et al., 1994)
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Structural inversions

The linearised inversion problem

δνl
νl︸︷︷︸

obs.

=

∫ R

0

K l
a,b(r)︸ ︷︷ ︸

known

δa

a︸︷︷︸
unknown

dr +

∫ R

0

K l
b,a(r)︸ ︷︷ ︸

known

δb

b︸︷︷︸
unknown

dr +
Fsurf.(νl)

El

where (a, b) are two structural profiles (e.g. (ρ, Γ1))

this time there are two functions to invert

this leads to various modifications in the RLS and SOLA methods, as well
as the introduction of Kcross
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Structural inversions – RLS

instead of solving this:

J(Ωinv) =
∑
l

1

σ2
l

(
Sl −

∫ R

0

K l
ΩΩdr

)2

+ Λ

〈
1

σ2

〉∫ R

0

(
d2Ω

dr 2

)2

dr

one has to solve this:

J

(
δa

a
,
δb

b

)
=

∑
l

1

σ2
l

(
δνl
νl
−
∫ R

0

K l
a,b
δa

a
dr −

∫ R

0

K l
b,a
δb

b
dr

)2

+Λ

〈
1

σ2

〉∫ R

0

[(
d2

dr 2

δa

a

)2

+

(
d2

dr 2

δb

b

)2
]
dr

one can optionally include additional terms to reduce surface effects
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Averaging and cross-term kernels

in much the same way as before, (δa(r0)/a(r0))inv and (δb(r0)/b(r0))inv

are related in a linear way to the observables(δν/ν)l . This leads to:(
δa

a

)
inv

=
∑
l

cl(r0)

(
δν

ν

)
l

(
δb

b

)
inv

=
∑
l

c ′l (r0)

(
δν

ν

)
l

this leads to the following definitions:

Kavg(r0, r) =
L∑

l=1

cl(r0)K l
a,b(r) Kcross(r0, r) =

L∑
l=1

cl(r0)K l
b,a(r)

K′avg(r0, r) =
L∑

l=1

c ′l (r0)K l
b,a(r) K′cross(r0, r) =

L∑
l=1

c ′l (r0)K l
a,b(r)
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Structural inversions – SOLA

instead of solving this:

J(cl(r0)) =

∫ R

0

[
T (r0, r)−Kavg(r0, r)

]2
dr +

tan θ

〈σ2〉

L∑
l=1

(clσl)
2 + λ

{
1−

∫ R

0

Kavg

}
one has to solve these:

J(cl(r0)) =

∫ R

0

{T (r0, r)−Kavg(r0, r)}2 dr + β

∫ R

0

{Kcross(r0, r)}2 dr

+
tan θ

∑L
l=1 (cl(r0)σl)

2

〈σ2〉 + λ

{
1−

∫ R

0

Kavg(r0, r)dr

}
J ′(c ′l (r0)) = β′

∫ R

0

{
K′cross(r0, r)

}2
dr +

∫ R

0

{
T ′(r0, r)−K′avg(r0, r)

}2
dr

+
tan θ′

∑L
l=1 (c ′l (r0)σl)

2

〈σ2〉 + λ′
{

1−
∫ R

0

K′avg(r0, r)dr

}
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The solar abundance problem

(Basu et al. 2014)
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The solar abundance problem

(taken from Basu et al. 2014)
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Integrated quantities

structural inversions are difficult for stars other than the Sun, due to the
limited number of modes (e.g. Basu et al. 2002)

one strategy is to invert stellar parameters rather than structural profiles

How does it work?

δρinv(r0)

ρ(r0)
=

∫ R

0

Kavg(r0, r)
δρ

ρ
dr +

∫ R

0

Kcross(r0, r)
δΓ1,0

Γ1,0
dr

an inversion gives you a weighted average of the underlying profile

idea: directly search for the appropriate weighting which yields the stellar
parameter

carry out a SOLA inversion with a suitable target function:

Target function =
4πr 2ρR

M
⇒ stellar mean density
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Integrated quantities

What parameters are accessible?

total angular momentum (Pijpers, 1998)

mean density (Reese et al. 2012)

acoustic radius, core indicators (Buldgen et al. 2013)
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Some examples
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Non-linear inversion methods

a second strategy for structural inversions in stars other than the Sun

useful for stars with mixed modes which are highly sensitive to structural
changes

applies even when the reference model is far away from true structure

still needs to be further developed

Two approaches

frequency-based approach

approach based on internal phase-shifts
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Non-linear RLS

Description

iterated RLS inversions

minimisation of the following cost function:

J(f ) =
∑
i

(
νobs
i − νtheo

i (f )

σi

)2

+ Λ

∫ Rcut

0

(
∂2 (ln ρ)

∂r 2

)2

dr

Different works

Antia (1996): inversion on (ρ, Γ1,0), regularisation of
(
δρ
ρ
,
δΓ1,0

Γ1,0

)
Reese (ongoing): inversion on ρ, fixed Γ1,0 profile, regularisation of ρ
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Some examples
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Differential Response Inversion

Description

1 Discretise (ρ, Γ1,0) profiles up to a
truncation point.

2 At the observed frequencies,
obtain partial wave solutions and
associated phase shifts.

3 Adjust model so that phase shifts
become a function of frequency
only.

Various articles

Vorontsov (1998, 2001), Roxburgh
(2002, 2010)

4EVXMEP�[EZI�WSPYXMSR

(Roxburgh & Vorontsov, 2003)
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An example

Favourable Unfavourable

0.0 0.1 0.2 0.3 0.4 0.5
r/R

0

50

100

150

200

250

300

350

ρ(
g 

cm
-3

)

Exact
Inverted
Initial guess

0.3µHz noise
l=0-3, ν=1-5mHz

in 5 realizations

350

r/R

0.0 0.1 0.2 0.3 0.4 0.5
r/R

0

50

100

150

200

250

300

350

ρ(
g 

cm
-3

)

Exact
Inverted
Initial guess

0.3µHz noise
l=0-2, ν=2-4mHz

in 5 realizations

(Roxburgh, 2002)

multiple realisations are used to determine the uncertainty on the profile
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Conclusion

What inversions can do

probe rotation profiles

probe the internal structure of stars

calculate various stellar parameters

test new physics outside a given grid of stellar models

Limitations

(local) linearity of the relation between pulsation frequencies and stellar
structure

there are a priori assumptions which go into constructing
rotation/structural profiles

cannot give more information than what is available in the modes
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Conclusion

Recommended reading

Christensen-Dalsgaard’s lecture notes: the variational principle

Lynden-Bell & Ostriker (1967): the variational principle in a general
context

Gough & Thompson (1990): structural kernels

Christensen-Dalsgaard et al. (1990): error propagation/magnification,
averaging kernels

examples in this course are base on data from this article

Reese et al. (2012), Buldgen et al. (2015, 2016): inversions of stellar
parameters

Inversion tools

InversionKit: 1D inversions on individual stars

InversionPipeline: inversions of stellar parameters using a grids of models

NonLinearKit: experimental non-linear 1D inversion tool

SOLA Pack (link?): 2D rotation inversions in the sun

D. R. Reese Stellar Inversion Techniques
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Symmetry of the pulsation equations

Consequence 3 – variational principle

we start with a partial solution (~ξ, p′,Ψ′) and define the following
polynomial

P(x) = x2
〈
~ξ, ~ξ
〉
−
〈
~ξ,F(~ξ)

〉
note: the above polynomial is defined even if ~ξ is not an eigenmode

solving the equation P(x) = 0 leads to two solutions: ±X

if ~ξ is an eigenmode, then X is the associated pulsation frequency ω
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Symmetry of the pulsation equations

Consequence 3 – variational principle

How does X vary when the ~ξ is slightly modified?

We calculate the differential of P(X ) = 0:

2XδX
〈
~ξ, ~ξ
〉

+ X 2
{〈
δ~ξ, ~ξ

〉
+
〈
~ξ, δ~ξ

〉}
=
{〈
δ~ξ,F(~ξ)

〉
+
〈
~ξ,F(δ~ξ)

〉}
the term

〈
~ξ,F(δ~ξ)

〉
may be rewritten as

〈
F(~ξ), δ~ξ

〉
the terms in curly brackets are simplified using the fact that
z + z∗ = 2<(z), for any complex quantity z

isolating δX then yields:

δX =
−X 2<

{〈
δ~ξ, ~ξ

〉}
+ <

{〈
δ~ξ,F(~ξ)

〉}
X
〈
~ξ, ~ξ
〉 =

<
〈
δ~ξ,−X 2~ξ + F(~ξ)

〉
X
〈
~ξ, ~ξ
〉
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Symmetry of the pulsation equations

Consequence 3 – variational principle

δX =
<
〈
δ~ξ,−X 2~ξ + F(~ξ)

〉
X
〈
~ξ, ~ξ
〉

if −X 2~ξ + F(~ξ) = ~0, then δX = 0 for any δ~ξ

however, −X 2~ξ + F(~ξ) = ~0 implies that ~ξ is an eigenmode, and X 2 its
eigenvalue

hence, this leads to the variational principle:

A small error on an eigenfunction, δ~ξ, leads to a 2nd (or higher) order
modification of X
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