Synergies between Asteroseismology and Exoplanet Science

Daniel Huber University of Sydney

4th Azores Summer School

July 2016

How did I get here?

Coordinates: 38.525822148178136, -28.632156355306506

Antipodes Location: Most likely the ocean. Watch out for sharks. Coordinates: -38.525822148178136, 151.3678436446935

Outline

- 1. Introduction: Know the Star, Know the Planet
- 2. Exoplanet Radii, Masses & Ages
- 3. Orbital Eccentricities
- 4. Obliquities of Exoplanet Systems
- 5. Chemical Abundances of Exoplanet Host Stars
- 6. (Brief) Outlook

Introduction: Know the Star, Know the Planet

Key Exoplanet Questions

Key Exoplanet Questions

- How did close-in gas giant planets form?
- What are the compositions of exoplanets?
- What are the orbital architectures of typical exoplanet systems?
- What is the occurrence rate of planets as a function of size, spectral type, evolutionary state?
- Are there habitable planets outside the solar system?

Key Exoplanet Questions

- How did close-in gas giant planets form?
- The answer to every one of
 these questions depends on our understanding of stars!
- What is the occurrence rate of planets as a function of size, spectral type, evolutionary state?
- Are there habitable planets outside the solar system?

Exoplanet Radii, Masses, and Ages

Observables: $T = Transit Duration \tau = In/Egress Duration <math>\delta = Transit Depth$

Limb Darkening

1. 10

÷ 1

A. 200.4

DO/HML Quick-Look Continuum: 20140320_151500

.*

194 34

SDO/HMI Quick-Look Continuum: 20140320_15150

SDO/HMI Quick-Look Continuum: 20140320_151500

$$T_{\rm full} \equiv t_{\rm III} - t_{\rm II}$$

$$T_{\rm tot} \equiv t_{\rm IV} - t_{\rm I}$$

*,transit = $\frac{3\pi}{GP^2} \left(\frac{a}{R_{\star}}\right)^3$

Big Result 1: Transits can be used to directly measure the mean stellar density

T = Transit Duration

- $\tau = In/Egress Duration$
 - δ = Transit Depth

Hard to measure for low S/N Transits!

 $\star, \text{transit} = \frac{3\pi}{GP^2} \left(\frac{a}{R_{\star}}\right)^3$

Big Result 1: Transits can be used to directly measure the mean stellar density

Big Result 2: Asteroseismic Density can yield vastly improved transit parameters

Precise Planet Radii are key to determine their compositions

Kepler-452b: A Rocky World?

Kepler-452b: A Rocky World?

2.0?

Kepler-452b: A Rocky World?

The Culprit: Stellar Parameters!

Life Before Kepler: µ Ara

Beyond Radii: Ages of Planet Hosts

Kepler-444 = HIP94931

Campante et al. 2015

Kepler-444 = HIP94931

 $T_{eff} \sim 5000K, [Fe/H] \sim -0.6, high proper motion!$ Asteroseismology + Spectroscopy: $R = 0.75 + -0.01 R_{\odot}$ Campante et al. 2015 $M = 0.76 + -0.04 M_{\odot}$ Age = 11.2 + -0.9 Gyr

5 transiting planets: all smaller than Earth, all with periods < 10 days!

$$R_{01} = 0.395 + /-0.015 R \oplus R_{02} = 0.499 + /-0.025 R \oplus R_{03} = 0.511 + /-0.018 R \oplus R_{04} = 0.535 + /-0.017 R \oplus R_{05} = 0.725 + /-0.061 R \oplus R_{05} = 0.725 R \oplus$$

Campante et al. 2015

Moon

Mercury Mars

Earth

11.2 Gyr

Synergy II:

Orbital Eccentricities

*,transit = $\frac{3\pi}{GP^2} \left(\frac{a}{R_{\star}}\right)^3$

Big Result 1: Transits can be used to directly measure the mean stellar density

*,transit = $\frac{3\pi}{GP^2} \left(\frac{a}{R_{\star}}\right)^3$

Big Result 1: Transits can be used to directly measure the mean stellar density

Assumes circular orbits!

seismic density lifts degeneracies to constrain eccentricities

Van Eylen & Albrecht 2015

Why are exoplanet eccentricities important?

Why are eccentricities important?

Time spent in habitable zone depends on eccentricity

Eccentricities of Small Planets

Small planets are preferentially on circular orbits!

Van Eylen & Albrecht 2015

Testing for False-Positives

- $\rho \star / \rho_{transit}$ can be used to identify false positives
- Important: p_{transit} may not always be reliable (Kepler-91!)

Sliski & Kipping 2015

Testing Asteroseismic Densities

TrES-2 (Southworth et al. 2010)

HAT P-7 (Southworth et al. 2011)

HD17156 (Nutzman et al. 2011)

Kepler-14 (Southworth et al. 2011)

Huber 2015 + new EB's from Gaulme et al. (2016)

Obliquities of Exoplanet Systems

Obliquity

Angle between the spin and orbital vectors

 Ψ = angle between spin-axis and orbit normal (obliquity)

 λ = sky-projected angle between spinaxis and orbit normal

is = line of sight spinaxis angle

i_p = line of sight orbit inclination

Rossiter-McLaughlin Effect

 transit "distorts"
spectral line and hence radial velocity signal

measures projected
obliquity λ

scales with planet size

Inclination $= 90^{\circ}$

time

Andrea Miglio University of Birmingham, UK

What can we learn from obliquities about exoplanets?

A 20 year old puzzle: How did hot Jupiters form?

Batalha (2015)

Asteroseismic Obliquities

 $\begin{array}{lll} \textbf{Kepler-50}\\ \textbf{R}_b = 1.7 \ \textbf{R} \oplus & \textbf{P}_b = 7.8 d\\ \textbf{R}_c = 2.2 \ \textbf{R} \oplus & \textbf{P}_c = 9.4 d \end{array}$

aligned

 $\begin{array}{lll} \mbox{Kepler-65} \\ R_b = 1.4 \ R \oplus & P_b = 2.2d \\ R_c = 2.6 \ R \oplus & P_c = 5.9d \\ R_d = 1.5 \ R \oplus & P_d = 8.1d \end{array}$

aligned

Chaplin et al. (2013)

The Oddball: Kepler-56

Kepler-56 Asteroseismology

~50 individual frequencies detected

mixed *l=1* modes are split into triplets by rotation

Huber et al. (2013)

Chemical

Abundances of Exoplanet Host Stars

High-Resolution Spectroscopy

Petigura (2015)

T_{eff}-log(g)-[Fe/H] Degeneracies

Torres et al. (2012)

Typical Error Bars!

The Planet-Metallicity Correlation

Gonzalez 1997, Santos et al. 2004, Fischer & Valenti 2005

The Planet-Metallicity Correlation

Buchhave et al. 2012, Nature

Asteroseismology + Spectroscopy

Brewer et al. 2016

Outlook: Where do we go from here?

Asteroseismology Revolution

Future: Planets orbiting A Stars

Asteroseismology of A stars will be crucial to characterize young planets!

Future: Giants Orbiting Giants

~100,000+ expected oscillating giants from TESS!

Kepler/K2 (now)

Credit: Mads Fredslund Andersen

WFIRST (~2025)