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A&A proofs: manuscript no. aa24291-14

KOI-206 KOI-614 KOI-680

Fig. 3. Model of the maximum likelihood step of the merged chain of KOI-206, KOI-614, and KOI-680 (from left to right columns) plotted with
the data. From top to bottom: SED, light curve, radial velocity in time, and radial velocity in phase. In the bottom panels: residuals after subtracting
the model to the observed data. SED plot: the solid line plots the PHOENIX/BT-Settl interpolated synthetic spectrum, in red circles the absolute
photometric observations listed in Table 2, in blue open circles the result of integrated the synthetic spectrum in the observed bandpasses. Light
curve plot: folded transit observed by Kepler in long-the black solid line plots the Keplerian model a for the radial velocities and red circles the
SOPHIE observations.

priors, but the width of the distribution was increased by an or-1

der of magnitude to ensure that it would not bias the results.2

It is a well known problem that the uncertainty in the stel-3

lar parameters obtained from evolutionary models may be un-4

derestimated. To account for this, we use di↵erent evolutionary5

models as input for the stellar parameters, and the combined6

outcome will naturally enlarge the errors in the stellar param-7

eters from the di↵erences between them. For each of the targets,8

we therefore fit the data three times using a di↵erent evolution-9

ary model: STAREVOL, Dartmouth, and PARSEC. To ensure a10

broad exploration of the parameter space, we compute 30 chains11

of 106 steps, starting at random points drawn from the joint prior.12

After removing the burn-in interval of each chain, we obtain13

a merged chain by thinning each chain. The thinning factor is14

determined by the maximum correlation length found among all15

parameters in each chain (e.g. Tegmark et al. 2004). This is done16

to obtain independent points to form the posterior distributions. 17

Then we take the same number of samples of each merged chain 18

from each stellar model, obtaining the combined merged chain. 19

We obtain 3168, 729, and 4564 independent points in the com- 20

bined merged chain for KOI-206, KOI-614, and KOI-680, re- 21

spectively, which we use to obtain the estimated value and the 22

68.3% central confidence interval, both for jump and derived 23

parameters (listed in Table 2). The model of maximum likeli- 24

hood is plotted together with the data in Fig. 3. The correlation 25

distributions and histograms are shown in Figs. 12–14 for the 26

MCMC jump parameters. We found that the distributions of the 27

posteriors obtained from the di↵erent stellar models are com- 28

patible within 1�. The stellar evolution tracks from STAREVOL 29

in a Hertzsprung-Russell diagram are given in Fig. 4, along 30

with the luminosity-Te↵ joint posterior distributions to show the 31

evolutionary stage of the host stars. 32
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The two-body problem

Murray & Dermott “Solar System Dynamics”
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The two-body problem

Murray & Dermott “Solar System Dynamics”

m1

m2

r

O
r2

r1
R

CM

m1r̈1 +m2r̈2 = 0

R =
m1r1 +m2r2
m1 +m2

define

m1r1 +m2r2 = ↵t+ �
integrate

R =
↵t+ �

m1 +m2

The centre-of-mass is stationary or moving in a straight line with constant velocity.



The two-body problem - Relative orbit

Murray & Dermott “Solar System Dynamics”

m1

m2

r

O
r2

r1
R

CM

Now consider the motion of m2 relative to m1

r = r2 � r1

r̈ = r̈2 � r̈1
F1

F2

F2 = �Gm1m2

r3
r = m2r̈2

F1 = +Gm1m2

r3
r = m1r̈1

Divide through: F1 by m1, and F2 by m2 
and combine

r̈+ G(m1 +m2)
r

r3
= 0

Equation of 
relative motion



The two-body problem - Relative orbit

Murray & Dermott “Solar System Dynamics”

r̈+ G(m1 +m2)
r

r3
= 0 Equation of 

relative motion

Take vector product with r

r⇥ r̈ = 0 r⇥ ˙r = h = constant

• h is a sort of angular momentum. 
• The movement of m2 with respect to m1 lies in a plane.

h = r2✓̇ ẑr = rr̂

ṙ = ṙr̂+ r✓̇✓̂

Polar coordinates
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r̈+ G(m1 +m2)
r

r3
= 0 Equation of 

relative motion

Scalar equations obtained 

r̈ � r✓̇2 = � µ

r2
µ = G (m1 +m2)withr̂ �!

✓̂ �! d

dt

⇣
r2✓̇

⌘
= 0 conservation of angular momentum.

r =
p

1 + e cos(✓ �$)
where     and e are 
integration constants

$

p = h2/µand
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r =
p

1 + e cos(✓ �$)

General equation of a conic in polar coordinates.

circle e = 0; p = a

ellipse 0 < e < 1; p = a(1� e2)

parabola e = 1; p = 2q

hyperbola e > 1; p = a(e2 � 1)

where     and e are 
integration constants

$

p = h2/µand
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Maximum and minimum distances:
r =

a(1� e

2)

1 + e cos(✓ �$)

pericentre rperi = a(1� e)

apocentre
r
apo

= a(1 + e)

$

✓ = $

✓ = $ + ⇡

Measure angles from pericentre.
⌫ = ✓ �$

r =
a(1� e

2)

1 + e cos(⌫)

Define true anomaly: 
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It can be shown that the area swept  by m2 around m1 per unit time is 
proportional to h.

Second Law of Kepler
dA

dt
=

1

2
h

h = r2 ˙✓ =

p
µa(1� e2) = constant

A = ⇡abThe area swept over a period P is the area of the ellipse 
⇡ab

P
=

1

2
h

⇡2a4(1� e2)

P 2
=

1

4
µa(1� e2)

P 2 =
4⇡2

µ
a3 Third Law of Kepler
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r =
a(1� e

2)

1 + e cos(⌫)

???

M =
2⇡

P
(t� ⌧)

Mean 
anomaly ⌧ Time of periastron passage
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M =
2⇡

P
(t� ⌧)

Mean 
anomaly ⌧ Time of periastron passage

tan
⇣⌫
2

⌘
=

r
1 + e

1� e
tan

✓
E

2

◆
Eccentric to 
true anomaly

M = E � e sin(E)Kepler’s 
equation

Transcendental; requiere 
iterative methods to solve.

r =
a(1� e

2)

1 + e cos(⌫)
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m1

m2

r

O
r2

r1
R

CM
R1

R2

R =
m1r1 +m2r2
m1 +m2

remember

R1 = r1 �R R2 = r2 �R
new vectors 
of interest

m1R1 +m2R2 = 0 vectors lie in the same line, 
with opposite directions.
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m1

m2

r

O
r2

r1
R

CM
R1

R2

R1 = r1 �R

R2 = r2 �R

m1R1 +m2R2 = 0

we can write scalar 
equations

R1 =
m2

m1 +m2
r R2 =

m1

m1 +m2
r

Question: what would be the barycentric motion of m1 and m2 look like?
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Question: what would be the barycentric motion of m1 and m2 look like?

R1 =
m2

m1 +m2
r R2 =

m1

m1 +m2
r

Answer: the orbits are a scaled-down version of the relative orbit.

a2 =
m1

m1 +m2
aa1 =

m2

m1 +m2
a

the orbital period and eccentricities are 
identical, but the arguments of pericentre 
differ by 180 degrees.
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• The motion of the bodies is confined to a plane (z = 0). 
• Want to transform to reference system (X, Y, Z). 
• Three rotations to go from (x, y, z) to (X, Y, Z): 
✴A rotation around z. 
✴A rotation around x. 
✴A rotation around z.
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• Three rotations to go from (x, y, z) to (X, Y, Z): 
✴A rotation around z. 
✴A rotation around the new axis x. 
✴A rotation around the new axis z.

0

@
X

Y

Z

1

A = P3P2P1

0

@
x

y

z

1

A

P1 =

0

@
cos! � sin! 0

sin! cos! 0

0 0 1

1

A P2 =

0

@
1 0 0

0 cos I � sin I
0 sin I cos I

1

A P3 =

0

@
cos⌦ � sin⌦ 0

sin⌦ cos⌦ 0

0 0 1

1

A
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0

@
X

Y

Z

1

A = P3P2P1

0

@
x

y

z

1

A

r

0

@
cos(⌫ + !) cos⌦� sin⌦ sin(⌫ + !) cos I
cos(⌫ + !) sin⌦+ cos⌦ sin(⌫ + !) cos I

sin(⌫ + !) sin I

1

A
= P3P2P1

0

@
r cos ⌫
r sin ⌫

0

1

A

P1 =

0

@
cos! � sin! 0

sin! cos! 0

0 0 1

1

A P2 =

0

@
1 0 0

0 cos I � sin I
0 sin I cos I

1

A P3 =

0

@
cos⌦ � sin⌦ 0

sin⌦ cos⌦ 0

0 0 1

1
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r

0

@
cos(⌫ + !) cos⌦� sin⌦ sin(⌫ + !) cos I
cos(⌫ + !) sin⌦+ cos⌦ sin(⌫ + !) cos I

sin(⌫ + !) sin I

1

A
= P3P2P1

0

@
r cos ⌫
r sin ⌫

0

1

A

None of the methods are sensitive to the orientation of the orbit in the 
plane of the sky.  

We can therefore simplify by considering the X axis is coincident with 
the line of nodes (Ω = 180 deg).

r

0

@
� cos(⌫ + !)

� sin(⌫ + !) cos I
sin(⌫ + !) sin I

1

A
= P3P2P1

0

@
r cos ⌫
r sin ⌫

0

1

A

X = �r cos(⌫ + !)
Y = �r sin(⌫ + !) cos I
Z = r sin(⌫ + !) sin I

r =
a(1� e

2)

1 + e cos(⌫)



The two-body problem - RV amplitude
Now, we are interested in the motion of the star with respect to the 
centre of mass of the system. Substituting a by a1

Deriving and using the fact that ⌫̇ = ✓̇ = h/r2 =
2⇡

P

a2
p
1� e2

r2

Z? =

✓
m2

m1 +m2
a

◆
(1� e2)

1 + e cos ⌫
sin(⌫ + !) sin I

V? = V0 +K? [cos(⌫ + !) + e cos!]

K? =

✓
2⇡G

P

◆1/3 1p
1� e2

m2 sin I

(m1 +m2)
2/3



Real life nuisance
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 - the Earth moves

One of the most stable HARPS stars.



Physical Models
Transits



A&A 572, A109 (2014)

0.98

0.99

1.00

Re
lat

ive
flu

x

-5 0 5
Hours from mid-transit

-1000
0

1000

O-
C

[p
pm

]

-80

-75

-70

-65

RV
[k

m
s�

1 ]

0.0 0.2 0.4 0.6 0.8 1.0
Orbital phase

-100
0

100

O-
C

[m
s�

1 ]

10�16

10�15

10�14

Fl
ux

[e
rg

sc
m
�2

s�
1 Å�

1 ]

104

Wavelength [Å]

-0.075
0.000
0.075

O-
C

[m
ag

]

Fig. 3. Data and best-fit model for KOI-189. From top to bottom: phase-
folded Kepler LC light curve, SOPHIE RV curve, and spectral energy
distribution. The Kepler data are corrected for contamination and nor-
malized to the out-of-transit flux listed in Table 7. The model of the
Kepler LC data is shown binned down to the data sampling rate. For
the SED, the best-fit spectrum is plotted as a solid black curve, and the
integrated fluxes in the photometric bands are plotted as open circles.

2.3. Photometry

In addition, we recovered infrared photometric measurements of
these two targets from the 2MASS (Cutri et al. 2003) and from
the WISE space mission (Wright et al. 2010). In the optical part
of the spectrum, measurements in the SDSS photometric bands
are available in the KIC. The uncertainties in these bands are
stated to be between 0.03 and 0.04 mag. We conservatively de-
cided to use 0.04 mag for all four available SDSS bands. We list
the magnitudes for the two targets in Table 3. These data were
employed to constrain the parameters of the host star and its dis-
tance by fitting the spectral energy distribution (see Sect. 4).

3. Primary star parameters

The co-added SOPHIE spectra were used to measure the atmo-
spheric parameters of the transit host using the method described

Table 3. Target characteristics and absolute photometric measurements.

KOI-189 KOI-686
Target Information
Kepler ID 11391018 7906882
2MASS ID 18593119+4916011 19472178+4338496
RA (J2000) 18 59 31.19 19 47 21.78
Dec (J2000) +49�16001.002 +43�38049.00.6
Kepler magnitudea 14.388 14.545
SDSS g0a 15.17 14.12
SDSS r0a 14.33 13.52
SDSS i0a 14.05 13.35
SDSS z0a 13.92 13.26
2MASS-Jb 12.895 ± 0.025 12.270 ± 0.020
2MASS-Hb 12.377 ± 0.021 11.932 ± 0.018
2MASS-Ksb 12.288 ± 0.025 11.847 ± 0.019
WISE-W1c 12.229 ± 0.024 11.789 ± 0.023
WISE-W2c 12.317 ± 0.022 11.844 ± 0.021

Notes.

(a) From Kepler input catalogue; (b) Cutri et al. (2003); (c) Cutri
et al. (2012).

by Deleuil et al. (2012), which yields the values listed in the sec-
ond column of Tables 4 and 5.

The Kepler PDC out-of-transit light curves were used in an
attempt to estimate the rotational period of the primary stars, and
their age by gyrochronology. For KOI-189, a generalized Lomb-
Scargle periodogram (GLS, Zechmeister & Kürster 2009) re-
veals a significant period at P = 30.45 ± 0.35 days, with a
peak-to-peak amplitude of ⇠0.2%. In agreement, Walkowicz &
Basri (2013) reported a rotation period of P = 33.26± 3.44 days
for this star, based on the analysis of quarter 9 data alone. On
the other hand, McQuillan et al. (2013) did not find a signif-
icant period for this star from the auto-correlation function on
quarter 3�14 data. This periodicity could be interpreted as the
rotational period because it is present identically in the first
and second halves of the light curve. However, it is known that
the Kepler pipeline attenuates astrophysical signals with periods
longer than about ten days, at least for amplitudes around 0.1%2.
Moreover, this period is also similar to the period of the transit-
ing candidate. Because the star is not expected to be synchro-
nized (see Sect. 6.1), this raises further suspicion about the na-
ture of this periodicity. We decided to remain conservative and
do not claim the detection of the rotational period of the primary
star of the KOI-189 system from the Kepler light curve.

On the other hand, the projected rotational velocity measured
spectroscopically is v sin i = 2.5±1.5 km s�1. The FWHM of the
SOPHIE CCF can also be used to estimate roughly the projected
rotational velocity of the star using the calibrations by Boisse
et al. (2010), which gives 4.4±1.0 km s�1, roughly in agreement
within the errors.

The PDC light curve of KOI-686 is clearly variable, with the
highest peak in a GLS periodogram at P = 13.66 ± 0.07 days.
There is power at a number of other peaks between 11 and
21 days, however. When the light curve is split into three
500-day sections, the highest peak in the GLS analysis changes:
P = 19.9 ± 0.4 days for BJD < 2 455 400, P = 15.5 ± 0.24 days
for 2 455 400 < BJD < 2 455 900, and P = 13.66 ± 0.17 days
for BJD > 2 455 900. Although this could be reminiscent of
di↵erential rotation and migrating spots, the amplitude of the

2 See PDC Data Release 21, Sect. 3.1.3, https://archive.stsci.
edu/kepler/release_notes/release_notes21/DataRelease_

21_20130508.pdf
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3. THE EQUATIONS AND SOLUTION FOR A LIGHT CURVE WITH TWO OR MORE TRANSITS

3.1. The General System of Equations

There are five equations that completely describe the planet transit light curve. The first three equations (eqs. [1]–[3])
describe the geometry of the transit in terms of transit depth, transit shape, and transit duration (see Fig. 1). For a planet
transit light curve that is due to two spheres passing in front of each other, the geometry is relatively straightforward (see
Sackett 1999 for a derivation of the transit duration eq. [3]). Here we parameterize the transit shape by both tT, the total transit
duration (first to fourth contact), and tF, the duration of the transit completely inside ingress and egress (second to third con-
tact). The three geometrical equations that describe the transit light curve depend on four observables: the period P, the transit
depth DF, tF, and tT. See Figure 1 for an illustrative definition of DF, tF, and tT. In addition to the three geometrical equations,
there are two physical equations (eqs. [4] and [5]), Kepler’s third law and the stellar mass-radius relation. It is these physical
equations that break the degeneracy of the mathematical description of two spheres passing in front of each other, by setting a
physical scale. It is this physical scale, together with the geometrical description, that allows the unique solution.

The equations are as follows: the transit depth, DF, with F defined as the total observed flux,

DF ! Fno transit " Ftransit

Fno transit
¼

Rp

R$

! "2

; ð1Þ

the transit shape, described by the ratio of the duration of the ‘‘ flat part ’’ of the transit (tF) to the total transit duration (tT),

sinðtF!=PÞ
sinðtT!=PÞ

¼
#
1" Rp=R$

$ %& '2" a=R$ð Þ cos i½ (2
(1=2

#
1þ Rp=R$

$ %& '2" a=R$ð Þ cos i½ (2
(1=2 ; ð2Þ

the total transit duration,

tT ¼ P

!
arcsin

R$
a

1þ Rp=R$
$ %& '2" a=R$ð Þ cos i½ (2

1" cos2 i

( )1=2
0

@

1

A ; ð3Þ

F∆

*R

*

t 
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F
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2 3 41

421 3

bR = a cos i

Fig. 1.—Definition of transit light-curve observables. Two schematic light curves are shown on the bottom (solid and dotted lines), and the corresponding
geometry of the star and planet is shown on the top. Indicated on the solid light curve are the transit depth DF, the total transit duration tT, and the transit
duration between ingress and egress tF (i.e., the ‘‘ flat part ’’ of the transit light curve when the planet is fully superimposed on the parent star). First, second,
third, and fourth contacts are noted for a planet moving from left to right. Also defined areR*,Rp, and impact parameter b corresponding to orbital inclination
i. Different impact parameters b (or different i) will result in different transit shapes, as shown by the transits corresponding to the solid and dotted lines.
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P,�F, tT, tF

A four-parameter model

In principle, seven physical 
parameters

M?, R?

Mp, Rp

i, e,$

Only some combinations of 
these are obtainable from the 
light curve alone (degeneracy).

Seager & Mallén-Ornelas (2003)
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In the circular case, these combinations are:
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Winn (2008)

Complicated algebra arises when eccentricity is included. 
Inversion is no longer easy, but the forward equations are given, 
approximately, by Winn (2008)
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3. THE EQUATIONS AND SOLUTION FOR A LIGHT CURVE WITH TWO OR MORE TRANSITS

3.1. The General System of Equations

There are five equations that completely describe the planet transit light curve. The first three equations (eqs. [1]–[3])
describe the geometry of the transit in terms of transit depth, transit shape, and transit duration (see Fig. 1). For a planet
transit light curve that is due to two spheres passing in front of each other, the geometry is relatively straightforward (see
Sackett 1999 for a derivation of the transit duration eq. [3]). Here we parameterize the transit shape by both tT, the total transit
duration (first to fourth contact), and tF, the duration of the transit completely inside ingress and egress (second to third con-
tact). The three geometrical equations that describe the transit light curve depend on four observables: the period P, the transit
depth DF, tF, and tT. See Figure 1 for an illustrative definition of DF, tF, and tT. In addition to the three geometrical equations,
there are two physical equations (eqs. [4] and [5]), Kepler’s third law and the stellar mass-radius relation. It is these physical
equations that break the degeneracy of the mathematical description of two spheres passing in front of each other, by setting a
physical scale. It is this physical scale, together with the geometrical description, that allows the unique solution.

The equations are as follows: the transit depth, DF, with F defined as the total observed flux,
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Fig. 1.—Definition of transit light-curve observables. Two schematic light curves are shown on the bottom (solid and dotted lines), and the corresponding
geometry of the star and planet is shown on the top. Indicated on the solid light curve are the transit depth DF, the total transit duration tT, and the transit
duration between ingress and egress tF (i.e., the ‘‘ flat part ’’ of the transit light curve when the planet is fully superimposed on the parent star). First, second,
third, and fourth contacts are noted for a planet moving from left to right. Also defined areR*,Rp, and impact parameter b corresponding to orbital inclination
i. Different impact parameters b (or different i) will result in different transit shapes, as shown by the transits corresponding to the solid and dotted lines.
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Inversion is possible for non-grazing transits under the 
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Figure 1. Calculations for tT using our model for various e and i. A conver-
gence occurs for very high e, making an accurate determination of i more
difficult. Note how closely spaced the high inclinations are, making dif-
ferentiation difficult here too. Furthermore, we note that our model cannot
generate the durations for orbits of e > 0.885 since the perihelion is inside
the star’s radius for such orbits.

this line of thought to include e and ϖ . Both of these parameters
must also be determined by an independent observation, along with
stellar mass, before the radius of the star can be determined.

The ideal observation procedure would therefore be to use an
independent measurement of M∗, followed by radial velocity mea-
surements to determine e, ϖ and MP and then finally use transit
observations to calculate P, R∗ and finally RP. In the absence of an
independent M∗ measurement, stellar evolution must be invoked. In
Section 5.3, we will apply a typical analysis to HD 209458b, but we
first compare our model with two other established models.

4 VA L I DAT I O N O F T H E M O D E L

For our tests of the model, we consider a solar star, with a Jupiter
planet at a 3-d period orbit (so a = 0.0407 au). Consider that this
planet to have a position of pericentre of 20◦. We now consider a
range of eccentricities and produce the transit time durations for dif-
ferent inclinations. Figs 1 and 2 show the results for multiple cases
for different eccentricities, positions of pericentre and inclinations.

Any new model proposed, must be able to be demonstrate that
the SMO equations are a special case of the general form, for e =
0. For a circular orbit, we use the exact same assumptions as the
SMO equations and therefore an important test of this new model
is that it should reduce down to that form. Running a wide range
of numerical calculations, we find that our model agrees precisely
with that of the SMO equations for both tT and tF for circular orbits.3

Indeed, we show in Appendix A that the equations are analytically
identical in such conditions.

5 RESULTS

5.1 Comparison and tests of the model

We find our model disagrees with the model by Tingley & Sackett
(2005) and Ford et al. (2008). We note that the models by these two
authors are analytically identical and therefore there is no need for

3 Note that tT and tF are independent of limb darkening.

Figure 2. Variation of tT for a typical system as a function of ϖ and e. We
place a Jupiter with a 3-d orbit around a solar star at i = 86◦. The observed
sinusoidal shape is due to the change in velocity at different true anomalies,
and the sudden dip at ϖ ∼ 270◦ is due to the impact parameter approaching
(1 − p) due to increasing planet–star separation.

Figure 3. Residuals in tT between the model we present here and Ford
et al.’s model, for a typical system. The difference is around 30 s until we
reach high e where it diverges to minutes.

us to compare to both. In Fig. 3, we see that there is a systematic
discrepancy of around 30 s between Ford et al.’s model and that of
both the model we present here and the SMO model for e = 0.4 This
systematic persists up to e ≈ 0.5 and then diverges up to several
minutes for very high e. We attribute the source of discrepancy to
the different analytic expressions for the case of e = 0, where we
observe that the model we present here reduces down to the SMO
equations whereas that of Tingley & Sackett and Ford et al. do not,
but are, however, simpler and quicker to utilize.

We find that for very high eccentricities, the transit time duration
varies very little between different inclinations, making an accurate
determination of i problematic. In this case, we have chosen ϖ =
20◦, but the same effect occurs across a range of values for ϖ . The
source of this is due to our test planet being in a very close orbit
and so when we have high eccentricity, it grazes the star’s surface

4 For the case of the typical system we have described.

C⃝ 2008 The Author. Journal compilation C⃝ 2008 RAS, MNRAS 389, 1383–1390
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Importantly, in the common case that Rp/R* << 1:

Seager & Mallén-Ornelas (2003)
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Fig. 3. Data and best-fit model for KOI-189. From top to bottom: phase-
folded Kepler LC light curve, SOPHIE RV curve, and spectral energy
distribution. The Kepler data are corrected for contamination and nor-
malized to the out-of-transit flux listed in Table 7. The model of the
Kepler LC data is shown binned down to the data sampling rate. For
the SED, the best-fit spectrum is plotted as a solid black curve, and the
integrated fluxes in the photometric bands are plotted as open circles.

2.3. Photometry

In addition, we recovered infrared photometric measurements of
these two targets from the 2MASS (Cutri et al. 2003) and from
the WISE space mission (Wright et al. 2010). In the optical part
of the spectrum, measurements in the SDSS photometric bands
are available in the KIC. The uncertainties in these bands are
stated to be between 0.03 and 0.04 mag. We conservatively de-
cided to use 0.04 mag for all four available SDSS bands. We list
the magnitudes for the two targets in Table 3. These data were
employed to constrain the parameters of the host star and its dis-
tance by fitting the spectral energy distribution (see Sect. 4).

3. Primary star parameters

The co-added SOPHIE spectra were used to measure the atmo-
spheric parameters of the transit host using the method described

Table 3. Target characteristics and absolute photometric measurements.

KOI-189 KOI-686
Target Information
Kepler ID 11391018 7906882
2MASS ID 18593119+4916011 19472178+4338496
RA (J2000) 18 59 31.19 19 47 21.78
Dec (J2000) +49�16001.002 +43�38049.00.6
Kepler magnitudea 14.388 14.545
SDSS g0a 15.17 14.12
SDSS r0a 14.33 13.52
SDSS i0a 14.05 13.35
SDSS z0a 13.92 13.26
2MASS-Jb 12.895 ± 0.025 12.270 ± 0.020
2MASS-Hb 12.377 ± 0.021 11.932 ± 0.018
2MASS-Ksb 12.288 ± 0.025 11.847 ± 0.019
WISE-W1c 12.229 ± 0.024 11.789 ± 0.023
WISE-W2c 12.317 ± 0.022 11.844 ± 0.021

Notes.

(a) From Kepler input catalogue; (b) Cutri et al. (2003); (c) Cutri
et al. (2012).

by Deleuil et al. (2012), which yields the values listed in the sec-
ond column of Tables 4 and 5.

The Kepler PDC out-of-transit light curves were used in an
attempt to estimate the rotational period of the primary stars, and
their age by gyrochronology. For KOI-189, a generalized Lomb-
Scargle periodogram (GLS, Zechmeister & Kürster 2009) re-
veals a significant period at P = 30.45 ± 0.35 days, with a
peak-to-peak amplitude of ⇠0.2%. In agreement, Walkowicz &
Basri (2013) reported a rotation period of P = 33.26± 3.44 days
for this star, based on the analysis of quarter 9 data alone. On
the other hand, McQuillan et al. (2013) did not find a signif-
icant period for this star from the auto-correlation function on
quarter 3�14 data. This periodicity could be interpreted as the
rotational period because it is present identically in the first
and second halves of the light curve. However, it is known that
the Kepler pipeline attenuates astrophysical signals with periods
longer than about ten days, at least for amplitudes around 0.1%2.
Moreover, this period is also similar to the period of the transit-
ing candidate. Because the star is not expected to be synchro-
nized (see Sect. 6.1), this raises further suspicion about the na-
ture of this periodicity. We decided to remain conservative and
do not claim the detection of the rotational period of the primary
star of the KOI-189 system from the Kepler light curve.

On the other hand, the projected rotational velocity measured
spectroscopically is v sin i = 2.5±1.5 km s�1. The FWHM of the
SOPHIE CCF can also be used to estimate roughly the projected
rotational velocity of the star using the calibrations by Boisse
et al. (2010), which gives 4.4±1.0 km s�1, roughly in agreement
within the errors.

The PDC light curve of KOI-686 is clearly variable, with the
highest peak in a GLS periodogram at P = 13.66 ± 0.07 days.
There is power at a number of other peaks between 11 and
21 days, however. When the light curve is split into three
500-day sections, the highest peak in the GLS analysis changes:
P = 19.9 ± 0.4 days for BJD < 2 455 400, P = 15.5 ± 0.24 days
for 2 455 400 < BJD < 2 455 900, and P = 13.66 ± 0.17 days
for BJD > 2 455 900. Although this could be reminiscent of
di↵erential rotation and migrating spots, the amplitude of the

2 See PDC Data Release 21, Sect. 3.1.3, https://archive.stsci.
edu/kepler/release_notes/release_notes21/DataRelease_

21_20130508.pdf

A109, page 4 of 11

Time

Fl
ux

flux = f(time)



Analytical light curve expression

Mandel & Agol (2002)

L172 TRANSIT LIGHT CURVES Vol. 580

Fig. 1.—(a) Geometry of limb darkening. The star is seen edge-on, with the observer off the top of the page. The star has radius , and v is defined as ther∗
angle between the observer and the normal to the stellar surface, while . (b) Transit geometry from the perspective of the observer.m p cos v

3. NONLINEAR LIMB DARKENING

Limb darkening causes a star to be more centrally peaked in brightness compared to a uniform source. This leads to more
significant dimming during eclipse and creates curvature in the trough. Thus, including limb darkening is important for computing
accurate eclipse light curves. Claret (2000) proposed a nonlinear limb-darkening law that fits well a wide range of stellar models
and observational bands, , where , is the normalized radial coor-n/2 2 1/24I(r) p 1! ! c (1! m ) m p cos v p (1! r ) 0 ≤ r ≤ 1np1 n

dinate on the disk of the star and is the specific intensity as a function of r or m with . Figure 1a shows the geometryI(r) I(0) p 1
of lensing and the definition of m. The light curve in the limb-darkened case is given by

1 1!1 e 2d[F (p/r, z/r)r ]
F(p, z) p dr 2rI(r) dr I(r) , (2)[ ]" " dr0 0

where is the light curve of a uniform source defined in § 2.eF (p, z)
In what follows, . For convenience, we define , , and2 2 4c { 1! c ! c ! c ! c a { (z! p) b { (z" p) Q p ! c (n"np00 1 2 3 4 n

. We partition the parameter space in z and p into the regions and cases listed in Table 1. Next we describe each of these cases!14)
in turn.
In case 1, the star is unobscured, so . In case 2, the planet disk lies on the limb of the star but does not cover the centerF p 1

of the stellar disk. We define

(n"6)/4 2 2(1! a) n" 8 1 z ! p 1 1 n" 10 a! 1 1! a 1 1 n" 10 1! a
N p B , F , 1, , ; , ! F , ; ; . (3)1 2 1( ) ( ) ( )[ ]1/2(b! a) 4 2 a 2 2 4 a b! a 2 2 4 b! a

In the above equations, is the beta function, , , c; x, y) is Appell’s hypergeometric function of two variables, andB(a, b) F (a, b b1 1 2
is the Gauss hypergeometric function. The relative flux is . This case covers!1 !14F (a, b; c; x) F p 1! (2pQ) ! Nc (n" 4)np02 1 n

the ingress/egress where the light curve is steepest. For cases 3 and 4, the planet’s disk lies entirely inside the stellar disk but
does not cover the stellar center. We define

2 2z ! p 1 n" 4 b! a a! b n" 4 1 b! a(n"4)/4M p (1! a) F , ! , 1, 1; , ! F ! , ; 1; (4)1 2 1( ) ( )[ ]a 2 4 1! a a 4 2 1! a

and . Then the relative flux is given by . This case2 2 2 !1 2 !13L p p (1! p /2! z ) F p 1! (4Q) [c p " 2 ! Mc (n" 4) " c L]np10 n 4
requires the planet to be less than half of the size of the star. In case 5, the edge of the planet touches the center of the stellar
disk and the planet lies entirely within the stellar disk. The relative flux is , !1 1!1 !14F p " (2Q) ! c (n" 4) F [ (n" 4)/4,np0 n 2 12 2

. For case 6, the planet’s diameter equals the star’s radius and the edge of the planet’s disk touches both the stellar center21; 4p ]
and the limb of the star. The relative flux is

41 1 c 3 n nnF p " G " G 2" . (5)! Z( ) ( )#2 n" 4 2 4 4np02 pQ

flux = f(z)

z = d/R?

d = g(t)

Analytical expressions for the light loss as a function of z and p = Rp/Rs 
are given by Mandel & Agol (2002), for a uniform source and for 
nonlinear limb darkening laws (see also Giménez 2006).
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ABSTRACT
We present exact analytic formulae for the eclipse of a star described by quadratic or nonlinear limb darkening.

In the limit that the planet radius is less than a tenth of the stellar radius, we show that the exact light curve can
be well approximated by assuming the region of the star blocked by the planet has constant surface brightness.
We apply these results to the Hubble Space Telescope observations of HD 209458, showing that the ratio of the
planetary to stellar radii is . These formulae give a fast and accurate means of computing light0.1207" 0.0003
curves using limb-darkening coefficients from model atmospheres that should aid in the detection, simulation,
and parameter fitting of planetary transits.
Subject headings: binaries: eclipsing— eclipses— occultations— planetary systems

1. INTRODUCTION

The eclipse of the star HD 209458 by an orbiting planet was recently used to measure the size and mass of the planet, which
had been found with velocity measurements (Charbonneau et al. 2000; Henry et al. 2000). With this landmark discovery, the
planetary transit tool was added to the planet finder’s toolbox, already yielding several planetary candidates (Udalski et al. 2002a,
2002b; Dreizler et al. 2002). Several large surveys that aim to find planets using the transit signature are now being carried out
or planned and will soon yield large numbers of light curves requiring fast computation of eclipse models to find the transit needles
within the haystack of variability (Borucki et al. 2001; Howell et al. 2000; Mallen-Ornélas et al. 2002; Koch et al. 1998; Deeg
et al. 2000; Street et al. 2002). Light-curve fits to transit events may be used to characterize the planet and star, yielding important
constraints on planet formation (Cody & Sasselov 2002; Hubbard et al. 2001; Seager & Mallen-Ornélas 2002). The recent activity
in this new field of astronomy motivates a return to the equations describing the transit light curve, the subject of this Letter.
The limb darkening of main-sequence stars is typically represented by functions of , where v is the angle betweenm p cos v

the normal to the stellar surface and the line of sight to the observer (Fig. 1a). Claret (2000) has found that the most accurate
limb-darkening functions are the quadratic law in m and the “nonlinear” law, which is a Taylor series to fourth order in ; the1/2m
latter conserves flux to better than 0.05%. The data require an accurate description of limb darkening as demonstrated by Hubble
Space Telescope (HST) observations of HD 209458 of such high quality that a quadratic limb-darkening law was needed to fit
the transit light curve rather than the usual linear limb-darkening law (Brown et al. 2001).
In this Letter, we compute analytic functions for transit light curves for the quadratic and nonlinear limb-darkening laws and

make available our codes to the community (§ 7). For treatment of subtler effects during planetary transits, see Seager, Whitney,
& Sasselov (2000), Seager & Sasselov (2000), Hubbard et al. (2001), and Hui & Seager (2002). In § 2, we review the light curve
of a uniform spherical source. In § 3, we derive the light curve for eclipses of nonlinear limb-darkened stars. In § 4, we give a
simpler form in the limit of a quadratic limb-darkening law. In § 5, we give an approximation for the light curve in the case

, which is very fast to compute and is fairly accurate. In § 6, we apply the results to some example cases, and in § 7 wep ! 0.1
conclude.

2. UNIFORM SOURCE

We model the transit as an eclipse of a spherical star by an opaque, dark sphere. In what follows, d is the center-to-center
distance between the star and the planet, is the radius of the planet, is the stellar radius, is the normalized separationr r z p d/rp ∗ ∗
of the centers, and is the size ratio (Fig. 1b). The flux relative to the unobscured flux is F.p p r /rp ∗
For a uniform source, the ratio of obscured to unobscured flux is , wheree eF (p, z) p 1! l (p, z)

0, 1" p ! z,
2 2 2 21 4z ! (1" z ! p )2p k " k ! , F1! pF ! z ≤ 1" p,!0 1[ ]

e p 4l (p, z) p (1)
2p , z ≤ 1! p,{
1, z ≤ p! 1,

and , . We next consider the effects of limb darkening.!1 2 2 !1 2 2k p cos [(1! p " z )/2z] k p cos [(p " z ! 1)/2pz]1 0

1 California Institute of Technology, Mail Code 130-33, Pasadena, CA 91125; kmandel@tapir.caltech.edu, agol@tapir.caltech.edu.
2 Chandra Fellow.

Uniform source
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Analytical light curve expression



Computation of d as a function of time.

r =
a(1� e

2)

1 + e cos(⌫)

X = �r cos(⌫ + !)
Y = �r sin(⌫ + !) cos I
Z = r sin(⌫ + !) sin I

Back to Cartesian description of relative orbit

Planet-to-star centre distance is easily written as 

d =

p
X2

+ Y 2
=

a
�
1� e2

�

1 + e cos ⌫

q
1� sin2

(⌫ + !) sin2 I



Real life nuisance - integration smearing

Kipping et al. (2010)
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Figure 1. A trapezoid approximated light-curve with a one hour flat-bottom duration and 30 minute ingress/egress duration, τ , is shown
in solid. The dashed line shows the light-curve morphology for an integration time of 30minutes. The apparent ingress/egress duration,
τ ′, can be seen to have doubled purely as a consequence of the integration time.

ing the retrieved stellar density to be underestimated by a
factor which borders on an order-of-magnitude. This scale of
underestimation is sufficient to completely reject some plan-
etary candidates as unphysical. However, we note that in
reality the underestimation of ρ∗ will not be this severe due
to countering effects of limb darkening suppression discussed
later in §2.2.

Looking at Figure 2 again, let us explore the phys-
ical reasons for this underestimation. We begin our line
of thought by considering the impact parameter, b. If the
ingress/egress duration is elongated, what do we expect to
happen to the derived impact parameter? Consider two ex-
treme cases. When a planet transits with a very low impact
parameter, we have essentially an equatorial transit. This
means the vector describing the sky-projected planetary ve-
locity is nearly perpendicular to the stellar limb. As a result,
the planet crosses the limb expediently. In contrast, if we
have a near-grazing transit, the mutual angle between the
stellar limb and the sky-projected planetary velocity vector
has become more acute, which has the effect of making the
limb-crossing time much longer. Therefore, stretching the
ingress/egress duration causes b′ > b.

Having established this point, consider the effect on aR.
The simplest way to understand the effect on this param-
eter is to appreciate that b and aR exhibit an extremely
strong negative correlation, as demonstrated by Carter et al.
(2008). So the act of increasing the ingress/egress duration
will increase b and therefore decrease aR. Finally, from equa-
tion (11) we know that ρ∗ ∝ a3

R.

2.2 Limb Darkening Effects

For transit observations at visible wavelengths, limb darken-
ing is quite pronounced producing a well-known curvature
in the flat-bottom part of the light-curve. For large integra-
tion times, the curvature is smeared out, producing a flatter
transit trough morphology.

If we were trying to fit such a transit light-curve, and the
limb darkening parameters are exactly known, our hypothet-
ical fitting algorithm would move towards a case where limb-
darkening is least effective. This occurs for near-equatorial
transits. This is because as the transit impact parameter
becomes larger and larger, we move closer and closer to the
limb of the star where limb darkening accentuates. There-
fore, LC data pushes b′ towards a more equatorial value due
to limb darkening i.e. b′ < b.

2.3 Two Countering Effects

In conclusion, finite integration times have two countering
effects on b′ and thus a′

R and ρ′∗ as well. The ingress and
egress smearing causes the ingress to appear larger, which
occurs for more grazing transits. In contrast, the limb dark-
ening is suppressed, which occurs for more equatorial tran-
sits. Whilst limb darkening is important, especially for tran-
sit surveys like CoRoT and Kepler which operate at visible
wavelengths, the fundamental change in the transit mor-
phology is sufficiently large that it will tend to dominate.
This is because the amplitude of the curvature in the light-
curve trough is usually at least an order-of-magnitude less
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Figure 1. A trapezoid approximated light-curve with a one hour flat-bottom duration and 30 minute ingress/egress duration, τ , is shown
in solid. The dashed line shows the light-curve morphology for an integration time of 30minutes. The apparent ingress/egress duration,
τ ′, can be seen to have doubled purely as a consequence of the integration time.

ing the retrieved stellar density to be underestimated by a
factor which borders on an order-of-magnitude. This scale of
underestimation is sufficient to completely reject some plan-
etary candidates as unphysical. However, we note that in
reality the underestimation of ρ∗ will not be this severe due
to countering effects of limb darkening suppression discussed
later in §2.2.

Looking at Figure 2 again, let us explore the phys-
ical reasons for this underestimation. We begin our line
of thought by considering the impact parameter, b. If the
ingress/egress duration is elongated, what do we expect to
happen to the derived impact parameter? Consider two ex-
treme cases. When a planet transits with a very low impact
parameter, we have essentially an equatorial transit. This
means the vector describing the sky-projected planetary ve-
locity is nearly perpendicular to the stellar limb. As a result,
the planet crosses the limb expediently. In contrast, if we
have a near-grazing transit, the mutual angle between the
stellar limb and the sky-projected planetary velocity vector
has become more acute, which has the effect of making the
limb-crossing time much longer. Therefore, stretching the
ingress/egress duration causes b′ > b.

Having established this point, consider the effect on aR.
The simplest way to understand the effect on this param-
eter is to appreciate that b and aR exhibit an extremely
strong negative correlation, as demonstrated by Carter et al.
(2008). So the act of increasing the ingress/egress duration
will increase b and therefore decrease aR. Finally, from equa-
tion (11) we know that ρ∗ ∝ a3

R.

2.2 Limb Darkening Effects

For transit observations at visible wavelengths, limb darken-
ing is quite pronounced producing a well-known curvature
in the flat-bottom part of the light-curve. For large integra-
tion times, the curvature is smeared out, producing a flatter
transit trough morphology.

If we were trying to fit such a transit light-curve, and the
limb darkening parameters are exactly known, our hypothet-
ical fitting algorithm would move towards a case where limb-
darkening is least effective. This occurs for near-equatorial
transits. This is because as the transit impact parameter
becomes larger and larger, we move closer and closer to the
limb of the star where limb darkening accentuates. There-
fore, LC data pushes b′ towards a more equatorial value due
to limb darkening i.e. b′ < b.

2.3 Two Countering Effects

In conclusion, finite integration times have two countering
effects on b′ and thus a′

R and ρ′∗ as well. The ingress and
egress smearing causes the ingress to appear larger, which
occurs for more grazing transits. In contrast, the limb dark-
ening is suppressed, which occurs for more equatorial tran-
sits. Whilst limb darkening is important, especially for tran-
sit surveys like CoRoT and Kepler which operate at visible
wavelengths, the fundamental change in the transit mor-
phology is sufficiently large that it will tend to dominate.
This is because the amplitude of the curvature in the light-
curve trough is usually at least an order-of-magnitude less



Physical Models
Beyond the basics



Improving model realism.

“All models are wrong, 
but some are useful.” 

• Phase curves, secondary eclipses.


• Rossiter-McLaughlin effect.


• Transit timing variations.

George Box



Flux

Time

transit

occultation

star alone

star + planet dayside

star + planet nightside

star – planet shadow

Fig. 1.— Illustration of transits and occultations. Only the combined flux of the star and planet is observed. During a transit, the flux
drops because the planet blocks a fraction of the starlight. Then the flux rises as the planet’s dayside comes into view. The flux drops
again when the planet is occulted by the star.

as well align theX axis with the line of nodes; we place the
descending node of the planet’s orbit along the +X axis,
giving Ω = 180◦.
The distance between the star and planet is given by

equation (20) of the chapter by Murray and Correia:

r =
a(1− e2)

1 + e cos f
, (1)

where a is the semimajor axis of the relative orbit and f
is the true anomaly, an implicit function of time depending
on the orbital eccentricity e and period P (see Section 3 of
the chapter by Murray and Correia). This can be resolved
into Cartesian coordinates using equations (53-55) of the
chapter by Murray and Correia, with Ω = 180◦:

X = −r cos(ω + f), (2)
Y = −r sin(ω + f) cos i, (3)
Z = r sin(ω + f) sin i. (4)

If eclipses occur, they do so when rsky ≡
√
X2 + Y 2 is

a local minimum. Using equations (2-3),

rsky =
a(1 − e2)

1 + e cos f

√

1− sin2(ω + f) sin2 i. (5)

Minimizing this expression leads to lengthy algebra (Kip-
ping 2008). However, an excellent approximation that we
will use throughout this chapter is that eclipses are centered

around conjunctions, which are defined by the condition
X = 0 and may be inferior (planet in front) or superior
(star in front). This gives

ftra = +
π

2
− ω, focc = −

π

2
− ω, (6)

where here and elsewhere in this chapter, “tra” refers to
transits and “occ” to occultations. This approximation is
valid for all cases except extremely eccentric and close-in
orbits with grazing eclipses.
The impact parameter b is the sky-projected distance at

conjunction, in units of the stellar radius:

btra =
a cos i

R⋆

(

1− e2

1 + e sinω

)

, (7)

bocc =
a cos i

R⋆

(

1− e2

1− e sinω

)

. (8)

For the common case R⋆ ≪ a, the planet’s path across
(or behind) the stellar disk is approximately a straight line
between the pointsX = ±R⋆

√
1− b2 at Y = bR⋆.

2.2 Probability of eclipses

Eclipses are seen only by privileged observers who view
a planet’s orbit nearly edge-on. As the planet orbits its star,
its shadow describes a cone that sweeps out a band on the
celestial sphere, as illustrated in Figure 3. A distant ob-
server within the shadow band will see transits. The open-
ing angle of the cone, Θ, satisfies the condition sinΘ =

2

Credit: J. Winn



Optical phase curves

Borucki et al. (2009)



IR phase curves

Knutson et al. (2007)HD189733 b, a Hot Jupiter
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Optical and IR phase curves

Demory et al. (2016)

55 Cnc e, a Super-Earth on a P=0.74-day orbit
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Figure 2 — Longitudinal brightness maps of 55 Cancri e. Longitudinal brightness distributions

as retrieved from the Spitzer/IRAC 4.5µm phase-curve. The planetary dayside is modelled using

two prescriptions. Left: single-band model whose longitude, width and brightness is adjusted in

the fit. Right: model including three longitudinal bands whose positions and widths are fixed,

but their relative brightness being adjustable. The color-scales indicate the planetary brightness

normalised to the stellar average brightness (left) and the corresponding brightness temperature

(right) for each longitudinal band.
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Rossiter-McLaughlin effect

Credit: A. Triaud



Rossiter-McLaughlin effect
HD209458 b

SOPHIE



Rossiter-McLaughlin effect
HD209458 b

Amplitude ∝ (Rp/Rs)2 . v sinI



First measurements: alignment galore

HD 209458b   
(Winn et al. 2005) 

HD 189733b  (Winn et al. 2006) 

HD 147506b (Loeillet et al. 2007) 

HD 149026b   
(Wolf et al. 2007) 

HD 147506b  

(Winn et al. 2007) CoRoT-2b 
(Bouchy et al. 2008) 



First measurements: alignment galore

HD 209458b   
(Winn et al. 2005) 

HD 189733b  (Winn et al. 2006) 

HD 147506b 
(Loeillet et al. 2007) 

HD 149026b   
(Wolf et al. 2007) 

HD 147506b  
(Winn et al. 2007) 

CoRoT-2b 
(Bouchy et al. 2008) 

By 2008, the obliquity of about ⅕ of the known transiting 
planets had been measured.  

All orbits were aligned and prograde, in agreement with 
the expected result of planetary formation and migration 

in a protoplanetary disk



The first case of a misaligned system, XO-3 b

 Hébrard, Bouchy, Pont et al. (2008)
Hébrard, Bouchy, Pont, et al. (2008) 

First case of spin-orbit misalignment   

! = 70° ± 15° 

See also Winn et al. (2009) 

XO-3b 

Hébrard, Bouchy, Pont, et al. (2008) 

First case of spin-orbit misalignment   

! = 70° ± 15° 

See also Winn et al. (2009) 

XO-3b 

Confirmed in 2009 by Winn et al.

SOPHIE

SOPHIE



A long-period transiting planet in a very 
eccentric misaligned orbit 

Hébrard, Désert, Díaz, et al. (2010)

ELODIE + SOPHIE  
+ Keck + HET 

 (since 1999: Naef et al. 2001, Moutou  
et al. 2009, Wittenmyer et al. 2009,  

Winn et al. 2009, Hébrard et al. 2010) 

Hébrard, Désert, Díaz et al. (2010) 

SOPHIE (Feb 2009) (Moutou et al. 2009) 
Keck (Jun 2009) (Winn et al. 2009) 

SOPHIE (Jan 2010) (Hébrard et al. 2010) 

Spitzer  
13-14 Jan 2010 

HD 80606b 

! = 42° +/- 8° 

Spitzer, 13-14 Jan 2010

SOPHIE (février 2009) 
Keck (juin 2009) 

SOPHIE (janvier 2010) 
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Transits + TTV —> density

A&A proofs: manuscript no. aa24291-14

KOI-206 KOI-614 KOI-680

Fig. 3. Model of the maximum likelihood step of the merged chain of KOI-206, KOI-614, and KOI-680 (from left to right columns) plotted with
the data. From top to bottom: SED, light curve, radial velocity in time, and radial velocity in phase. In the bottom panels: residuals after subtracting
the model to the observed data. SED plot: the solid line plots the PHOENIX/BT-Settl interpolated synthetic spectrum, in red circles the absolute
photometric observations listed in Table 2, in blue open circles the result of integrated the synthetic spectrum in the observed bandpasses. Light
curve plot: folded transit observed by Kepler in long-the black solid line plots the Keplerian model a for the radial velocities and red circles the
SOPHIE observations.

priors, but the width of the distribution was increased by an or-1

der of magnitude to ensure that it would not bias the results.2

It is a well known problem that the uncertainty in the stel-3

lar parameters obtained from evolutionary models may be un-4

derestimated. To account for this, we use di↵erent evolutionary5

models as input for the stellar parameters, and the combined6

outcome will naturally enlarge the errors in the stellar param-7

eters from the di↵erences between them. For each of the targets,8

we therefore fit the data three times using a di↵erent evolution-9

ary model: STAREVOL, Dartmouth, and PARSEC. To ensure a10

broad exploration of the parameter space, we compute 30 chains11

of 106 steps, starting at random points drawn from the joint prior.12

After removing the burn-in interval of each chain, we obtain13

a merged chain by thinning each chain. The thinning factor is14

determined by the maximum correlation length found among all15

parameters in each chain (e.g. Tegmark et al. 2004). This is done16

to obtain independent points to form the posterior distributions. 17

Then we take the same number of samples of each merged chain 18

from each stellar model, obtaining the combined merged chain. 19

We obtain 3168, 729, and 4564 independent points in the com- 20

bined merged chain for KOI-206, KOI-614, and KOI-680, re- 21

spectively, which we use to obtain the estimated value and the 22

68.3% central confidence interval, both for jump and derived 23

parameters (listed in Table 2). The model of maximum likeli- 24

hood is plotted together with the data in Fig. 3. The correlation 25

distributions and histograms are shown in Figs. 12–14 for the 26

MCMC jump parameters. We found that the distributions of the 27

posteriors obtained from the di↵erent stellar models are com- 28

patible within 1�. The stellar evolution tracks from STAREVOL 29

in a Hertzsprung-Russell diagram are given in Fig. 4, along 30

with the luminosity-Te↵ joint posterior distributions to show the 31

evolutionary stage of the host stars. 32
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Fig. 4. Top: phase-folded plot of the best transit model of planet b (left) and c (right), over the SC data. In black the model, in red the data binned
every hundredth of orbital phase. Center: the same for the radial velocities. Bottom: the TTVs of planet b folded at the orbital period of planet c
(left) and those of planet c folded at the first peak of its Lomb-Scargle periodogram (right, Sect. 5.1). For each plot, the lower panel shows the
residuals as observed minus calculated (O�C) points.

the system using the spectral energy distribution (SED). The
magnitudes were fitted to sample the posterior distributions of
the distance of the system, the interstellar extinction E(B � V),
and the jitter of the SED. The model SED was interpolated
from the PHOENIX/BT-Settl synthetic spectral library (Allard
et al. 2012), scaled with the distance, the stellar radius, and
the reddening E(B � V), expressed through a Fitzpatrick (1999)
extinction law. For both the distance and the reddening, non-
informative priors were used.

In Table 3 we present the mode and the 68.3% equal-tailed
confidence intervals of the system parameters. According to our
analysis, Kepler-117 A is a '5 Gyr old F8V star with two planets
in low-eccentricity orbits (0.0493 ± 0.0062 and 0.0323 ± 0.0033
for planet b and c), which di↵er widely in their mass, but less so
in their radii: 0.094 ± 0.033 MJ, 0.719 ± 0.024 RJ for planet b
and 1.84 ± 0.18 MJ, 1.101 ± 0.035 RJ for planet c. The planetary
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Fig. 5. Model SED on the photometric bands. The residuals are shown
in the lower panel.
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Kepler 
multi-planet 
systems

4696 Kepler transiting 
planet candidates

1826 (39%) in 
multi systems

[112 systems]

234 (13%) 
in systems 
with TTVs

[3364 systems]

[794 systems]

TTVs: transit timing variations



Missing compact planetary systems.



KOI-273.01KOI-273.01

(Motalebi et al. 2015
updated from 

Dressing et al. 2015)(precision on the mass < 20%)

HD219134b

GJ1132b



Planet density from light curve data
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Gravity is scale invariant, i.e. under the transformation:

[G] =

✓
kg

m3

◆�1

s�2M 0 = ↵3M d0 = ↵d



Kepler 
multi-planet 
systems

4696 Kepler transiting 
planet candidates

1826 (39%) in 
multi systems

[112 systems]

234 (13%) 
in systems 
with TTVs

[3364 systems]

[794 systems]

TTVs: transit timing variations



Photo-dynamical modelling

N-body
integration

Positions and velocities
r(t

i
), v(t

i
)

Light curve
f(t

i
); ttv

k
 ;

 
tdv

k

Model 
parameters

Time array t
i

RV data
v

i

Light curve 
data f

i

RV curve
v(t

i
)

*
(or a combination thereof), 

at a given time, for j = 1, … , Npla

*
⇢⇤

Photodynamical 
model

Mj/M⇤, Rj/R⇤, aj/R⇤,

ej , ij ,M0j ,$j ,⌦j



Kepler-117, two planets far from resonance

Pc

Pb
= 2.7

Stellar and planetary densities obtained with 2% - 5% precision, 
without RV, and independently of stellar models. 

Almenara, Díaz, Mardling, et al. (MNRAS, 2015)

(Mb+Mc)/M* ~ 0.4%

G. Bruno et al.: Kepler-117
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Fig. 4. Top: phase-folded plot of the best transit model of planet b (left) and c (right), over the SC data. In black the model, in red the data binned
every hundredth of orbital phase. Center: the same for the radial velocities. Bottom: the TTVs of planet b folded at the orbital period of planet c
(left) and those of planet c folded at the first peak of its Lomb-Scargle periodogram (right, Sect. 5.1). For each plot, the lower panel shows the
residuals as observed minus calculated (O�C) points.

the system using the spectral energy distribution (SED). The
magnitudes were fitted to sample the posterior distributions of
the distance of the system, the interstellar extinction E(B � V),
and the jitter of the SED. The model SED was interpolated
from the PHOENIX/BT-Settl synthetic spectral library (Allard
et al. 2012), scaled with the distance, the stellar radius, and
the reddening E(B � V), expressed through a Fitzpatrick (1999)
extinction law. For both the distance and the reddening, non-
informative priors were used.

In Table 3 we present the mode and the 68.3% equal-tailed
confidence intervals of the system parameters. According to our
analysis, Kepler-117 A is a '5 Gyr old F8V star with two planets
in low-eccentricity orbits (0.0493 ± 0.0062 and 0.0323 ± 0.0033
for planet b and c), which di↵er widely in their mass, but less so
in their radii: 0.094 ± 0.033 MJ, 0.719 ± 0.024 RJ for planet b
and 1.84 ± 0.18 MJ, 1.101 ± 0.035 RJ for planet c. The planetary
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Fig. 5. Model SED on the photometric bands. The residuals are shown
in the lower panel.
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Photodynamic model posterior TTVs

Pb = 18.8 d

Pc = 50.8 d
Kp = 13



Photo-dynamical modelling

N-body
integration

Positions and velocities
r(t
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)

Light curve
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RV data
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Masses and radii are imprecise due to poor RV errors, but 
independent of stellar models. 

Simulations of RV data with 1-m/s precision lead to masses 
and radii at a few percent precision.

Kepler-117, two planets far from resonance
Almenara, Díaz, Mardling, et al. (MNRAS, 2015)

As a bonus, SOPHIE RVs break the Newtonian degeneracy. 

40 m/s



Limitations

•  Computing time. 

•  Complex parameter space (usually multi-modal). 

• Additional potential planets in the system. 

• Incomplete model: 

๏ Light-time effects. 

๏ Post-Newtonian / GR. 

๏ Stellar activity. 

๏ Tides.

Analytical TTVs 
analysis

Bayesian model 
comparison

Usually 
negligible{

{

Gaussian process 
regression



Stellar activity.

All models are incomplete.

Stellar activity Instrumental effectsStellar jitter

•  spots 
•  cycles

• outliers 
• false positives

di = mi + ei



Physical models
Radial velocity 

Transit light curve.

Error model
Beyond the independent 

normal paradigm

Data analysis
Likelihood functions 

MCMC
p(D|✓, H, I)

di = mi + ei
data model error



Data analysis
The Bayesian revolution



Statistical inference
Fig. adapted from 
Gregory (2005)

Observations 
(data)

Testable 
hypothesis 

(theory)

Deductive inference 
(predictions)

Statistical inference 
(hyp. testing, 

parameter estimation)



Statistical 
inference
requires a 
probability theory

Frequentist

Bayesian



Thomas Bayes (1701 – 1761)
First appearance of the product rule (the base for the 
Bayes’ theorem; An Essay towards solving a Problem in the 
Doctrine of Chances).

Pierre-Simon Laplace (1749 – 1827)
Wide application of the Bayes' rule. Principle of insufficient 
reason (non-informative priors). Primitive version of the 
Bernstein–von Mises theorem.

Laplace’s “inverse probability” is largely rejected for ~100 years. 
The reign of frequentist probability. Fischer, Pearson, etc.

p(Hi|I,D) = p(D|Hi,I)
p(D|I) · p(Hi|I)



Harold Jeffreys (1891 – 1989)
Objective Bayesian probability revived. 
Jeffreys rule for priors.

(1940s - 1960s)  
R. T. Cox 
George Pólya 
E. T. Jaynes
Plausible reasoning. Reasoning with uncertainty. 
Probability theory as an extension of Aristotelian logic.  
The product and sum rules deduced for basic principles. 
MAXENT priors. 

See E.T Jaynes. Probability Theory: The Logic of Science. 
http://www-biba.inrialpes.fr/Jaynes/prob.html

http://www-biba.inrialpes.fr/Jaynes/prob.html


Statistical inference
Fig. adapted from 
Gregory (2005)

Observations 
(data)

Testable 
hypothesis 

(theory)

Deductive inference 
(predictions)

Statistical inference 
(hyp. testing, 

parameter estimation)



"Bayes", "Bayesian", MCMC





Two basic tasks of statistical inference

Learning process 
(parameter estimation) 

Decision making 
(model comparison)



Bayesian probability represents a state of 

knowledge

Learning process

p(Hi|I) p(Hi|I,D)

D: data Discrete space  
(hypothesis space)

Posterior
p(✓̄|D,Hi, I)p(✓̄|Hi, I)

Prior: parameter vector 
Hi: hypothesis 
 I:  information

✓̄



Enter the likelihood function

Learning process

p(✓̄|Hi, I,D) =
p(D|✓̄, Hi, I)

p(D|Hi, I)
· p(✓̄|Hi, I)

PriorPosterior

D: data

: parameter vector 
Hi: hypothesis 
 I:  information

✓̄

p(✓̄|D,Hi, I) / L✓(Hi) · p(✓̄|Hi, I)

The proportionality constant has many names: marginal 
likelihood, global likelihood, model evidence, prior 
predictive. Hard to compute. Important.



Optimising the learning process

• The likelihood needs to be selective for the learning 
process to be effective.

Two extreme cases are shown in Figure 1.2. In the first, panel (a), the prior is

much broader than the likelihood. In this case, the posterior PDF is determined
entirely by the new data. In the second extreme, panel (b), the new data are much

less selective than our prior information and hence the posterior is essentially the
prior.

Now suppose we acquire more data represented by proposition D2. We can again
apply Bayes’ theorem to compute a posterior that reflects our new state of knowledge

about the parameter. This time our new prior, I 0, is the posterior derived from D1; I,
i.e., I 0 ¼D1; I. The new posterior is given by

pðH0jD2; I
0Þ / pðH0jI 0ÞpðD2jH0; I

0Þ: (1:13)

1.3.4 Example of the use of Bayes’ theorem

Here we analyze a simple model comparison problem using Bayes’ theorem. We start
by stating our prior information, I, and the new data, D.

I stands for:

a) Model M1 predicts a star’s distance, d1 ¼ 100 light years (ly).

b) Model M2 predicts a star’s distance, d2 ¼ 200 ly.

c) The uncertainty, e, in distance measurements is described by a Gaussian distribution of

the form

Parameter H0

(a)

Posterior
p(H0|D,M1,I )

Likelihood
p(D |H0,M1,I )

Prior
p(H0|M1,I )

Parameter H0

(b)

Posterior
p(H0|D,M1,I )

Prior
p(H0|M1,I )

Likelihood
p(D |H0,M1,I )

Figure 1.2 Bayes’ theorem provides a model of the inductive learning process. The posterior
PDF (lower graphs) is proportional to the product of the prior PDF and the likelihood function
(upper graphs). This figure illustrates two extreme cases: (a) the prior much broader than
likelihood, and (b) likelihood much broader than prior.
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P. Gregory (2005)

Dom
ina

ted
 

by p
rio

r 

inf
orm

ati
on

Dominated 

by data



Data analysis
Likelihood functions



The likelihood function

p(✓̄|Hi, I,D) =
p(D|✓̄, Hi, I)

p(D|Hi, I)
· p(✓̄|Hi, I)

PriorPosterior

D: data

: parameter vector 
Hi: hypothesis 
 I:  information

✓̄

p(✓̄|D,Hi, I) / L✓(Hi) · p(✓̄|Hi, I)

The likelihood is the probability of  obtaining data D, for a given 
prior information I and a set of parameters !.


Remember, likelihood is not a probability for parameter vector !

(for that you need the prior)



Ingredients

Likelihood function D: data

: parameter vector 
Hi: hypothesis 
 I:  information

✓̄

Statistical  
(non-deterministic) 

model

Physical 
model

Error  
statistics

• Analytic model 
• Simulations 
• …

• Unknown errors (jitter) 
• Instrument systematics 
• Complex physics (activity, …) 
• …

• Covariances 
• Non-Gaussianity 
• …

p(D|¯✓, Hi, I) = L✓(Hi)
indep.,gauss./ exp��2

✓

2



Constructing the likelihood

D = D1 D2 ... Dn = {Di}
Di: the i-th measurement is in the infinitesimal range yi to yi + dyi

The data:

The errors:

Ei: the i-th error is in the infinitesimal range ei to ei + dei

p(Ei|✓, H, I) = fE(ei) The probability distribution of statement Ei

Most used fE
fE(ei) = N(0,�2

i )

The model:

Mi: the i-th error is in the infinitesimal range mi to mi + dmi

p(Mi|✓, H, I) = fM (mi) The probability distribution of statement Mi



Constructing the likelihood

D = D1 D2 ... Dn = {Di}
The data:

yi = mi + eiRemember:

p(D|✓, H, I) = p(D1, D2, ..., Dn|✓, H, I)

We want to build the probability distribution:

p(Di|✓, H, I) =

Z
dmi fM (mi) fE(yi �mi)

It can be shown that: Convolution

equation



Constructing the likelihood

p(Di|✓, H, I) =

Z
dmi fM (mi) fE(yi �mi)

But for a deterministic model, mi is obtained from a (usually analytically) 
function f without any uncertainty (say, a Keplerian curve for RV measurements)

mi = f(xi|✓)
fM (mi) = �(mi � f(xi|✓))

Then: p(Di|✓, H, I) =

Z
dmi �(mi � f(xi|✓)) fE(yi �mi)

= fE(yi � f(xi|✓) = p(Ei|✓, H, I)

p(D|✓, H, I) = p(D1, D2, ..., Dn|✓, H, I) = p(E1, E2, ..., En|✓, H, I)



Constructing the likelihood

p(D|✓, H, I) = p(D1, D2, ..., Dn|✓, H, I) = p(E1, E2, ..., En|✓, H, I)

lnL = �1

2

⇥
n ln(2⇡) + ln |K|+ r ·K�1 · r|

⇤
Gaussian likelihood

K: covariance of the data; n: number of data points; r = y - m: residuals vector



Constructing the likelihood

Now, for independent errors (K is diagonal)

p(D|✓, H, I) = p(D1, D2, ..., Dn|✓, H, I) = p(E1, E2, ..., En|✓, H, I)

p(D|✓, H, I) = p(E1, E2, ..., En|✓, H, I)

= p(E1|✓, H, I)...p(En|✓, H, I)

=
nY

i=1

p(Ei|✓, H, I)

lnL = �1

2

"
n ln(2⇡) +

nX

i=1

ln�2
i + �2

#
/ �2



Constructing the likelihood

p(Di|✓, H, I) =

Z
dmi fM (mi) fE(yi �mi)

For a non-deterministic model, Mi is distributed:

Back to the convolution equation

Mi: the i-th error is in the infinitesimal range mi to mi + dmi

p(Mi|✓, H, I) = fM (mi) The probability distribution of statement Mi

E.g. adding instrumental error / resolution:

fM (mi) = N(f(xi|✓),�2
inst)



Data analysis
Ignorance priorsPriors



xkcd.com

http://xkcd.com


The role of the prior distribution

Learning process

p(✓̄|Hi, I,D) =
p(D|✓̄, Hi, I)

p(D|Hi, I)
· p(✓̄|Hi, I)

PriorPosterior

D: data

: parameter vector 
Hi: hypothesis 
 I:  information

✓̄

p(✓̄|D,Hi, I) / L✓(Hi) · p(✓̄|Hi, I)



Prior probabilities

Hi: hypothesis (can be continuous). 
 I:  information

• Prior information I is always present: 

• The term “prior” does not necessarily mean “earlier in time”. 

• Philosophical controversy on how to assign priors. 

• Subjective vs. objective views. 

• No single universal rule, but a few accepted methods. 

• Informative priors. Usually based on the output from previous 
observations. (What was the prior of the first analysis?). 

• Ignorance priors. Required as a starting point for the theory.

p(Hi|I)



Assigning ignorance priors

1. Principle of indifference. 

Given n mutually exclusive, exhaustive hypothesis, {Hi}, with i = 1, …, n, 
the PoI states: 

p(Hi|I) = 1/n



Assigning ignorance priors

2. Transformation groups. Location and scale parameters. 

For a certain type of parameters (location and scale), “total ignorance” 
can we represented as invariance under certain (group of) transformation. 

Location: “position of highest tree along a river.” 
Problem must be invariant under a translation.

X 0 = X + c

p(X|I) dX = p(X 0|I) dX 0 =

p(X 0|I)d(X + c) = p(X 0|I)dX

p(X|I) = constant

Uniform prior.



Assigning ignorance priors

2. Transformation groups. Location and scale parameters. 

For a certain type of parameters (location and scale), “total ignorance” 
can we represented as invariance under certain (group of) transformation. 

Scale: “life time of a new bacteria” or “Poisson rate” 
Problem must be invariant under scaling.

“Jeffreys” prior.

X 0 = aX

p(X|I) dX = p(X 0|I) dX 0 =

p(X 0|I)d(aX) = ap(X 0|I)dX

p(X|I) = constant

x



3. Jeffreys rule. 

Besides location and scale parameters, little more can be said using 
transformation invariance. 

Jeffreys priors use the Fisher information; parameterisation invariant, but 
strange behaviour in many dimensions. 

Assigning ignorance priors

Observed Fischer information: ID = �d

2
logLD

d✓2

But D is not known when we have to define a prior. Use expectation value 
over D.

I(✓) = �ED


d

2
logLD

d✓2

�



3. Jeffreys rule says:

Assigning ignorance priors

p(✓|I) /
p

I(✓)

Examples: 

• Mean of Normal distribution (") with known variance #^2. 

• Rate $ of Poisson distribution. 

• Exercise: Scale of Normal with known mean value?

p(µ|�2, I) / constant

p(�|I) / 1/
p
�



3. Jeffreys rule:

Assigning ignorance priors

p(✓|I) /
p

I(✓)

• Favours parts of parameter space where data provides more information. 

• Is invariant under reparametrisation. 

• Works fine only in one dimension… 

See more examples here: en.wikipedia.org/wiki/Jeffreys_prior

I(✓) = �ED


d

2
logLD

d✓2

�

http://en.wikipedia.org/wiki/Jeffreys_prior


Data analysis
Sampling the posterior (MCMC)



Sampling from the posterior

p(✓̄|D,Hi, I) / L✓(Hi) · p(✓̄|Hi, I)

• The posterior distribution is proportional to the likelihood times the prior. 

• The normalising constant (called model evidence, marginal likelihood, 
etc.) is of importance when comparing different models. 

• The posterior contains all the information on a given model a Bayesian 
statistician can get for a given set of priors and data. 

• Posterior is only analytical in few cases: 

• Conjugate priors. 

• Other methods needed to sample from posterior.

Most Bayesian computations can be reduced to expectation values with 
respect to the posterior.



Markov Chain Monte Carlo D: data

: parameter vector 
Hi: hypothesis 
 I:  information

✓̄

Metropolis-Hastings 

p(✓̄|D,Hi, I) / L✓(Hi) · p(✓̄|Hi, I)

✓̄0
*

✓̄0
*q(✓̄ 0, ✓̄)

L✓0 · p(✓̄0|I)1.

2. Create proposal point.

L✓0 · p(✓̄0|I)3.

r = L✓0 ·p(✓̄0|I)
L✓0 ·p(✓̄0|I)

4.



Markov Chain Monte Carlo D: data

: parameter vector 
Hi: hypothesis 
 I:  information

✓̄

Metropolis-Hastings 

p(✓̄|D,Hi, I) / L✓(Hi) · p(✓̄|Hi, I)

L✓0 · p(✓̄0|I)1.

2. Create proposal point.

L✓0 · p(✓̄0|I)3.

r = L✓0 ·p(✓̄0|I)
L✓0 ·p(✓̄0|I)

4.

5. Accept proposal with 
probability min(1, r)

✓̄0 q(✓̄
0 , ✓̄)

*

✓̄0
*

*q(✓̄ 0, ✓̄)

✓̄1



Markov Chain Monte Carlo D: data

: parameter vector 
Hi: hypothesis 
 I:  information

✓̄

Metropolis-Hastings 

p(✓̄|D,Hi, I) / L✓(Hi) · p(✓̄|Hi, I)

L✓0 · p(✓̄0|I)1.

2. Create proposal point.

L✓0 · p(✓̄0|I)3.

r = L✓0 ·p(✓̄0|I)
L✓0 ·p(✓̄0|I)

4.

5. Accept proposal with 
probability min(1, r)

✓̄0
*

*

q(✓̄ 0, ✓̄)

✓̄1



Markov Chain Monte Carlo D: data

: parameter vector 
Hi: hypothesis 
 I:  information

✓̄

Metropolis-Hastings 

p(✓̄|D,Hi, I) / L✓(Hi) · p(✓̄|Hi, I)

✓̄0 q(✓̄
0 , ✓̄)

*

✓̄0
*

*q(✓̄ 0, ✓̄)

✓̄1

pymc 
emcee 
kombine 
cobmcmc 
…

Algorithms
Metropolis-Hastings 
Gibbs sampling 
Slice sampling 
… 
Hybrid Monte Carlo

Codes



5 minutes 
to LEARN

a lifetime 
to MASTER



But beware. Non-
convergence, 

bad mixing. The 
dark side of 

MCMC are they.

Problems with correlations and 
multi-modal distributions.



The problem with Correlations

If parameters exhibit correlations, then step size must be small to reach the 
demanded fraction of accepted jumps.

Need a very long chain to explore the entire posterior. Or, more 
relevant, the entire posterior will not be explored thoroughly (i.e. 
reduced error bars!)

Rejected proposal

Accepted proposal



MCMC: the Good, the Bad, and the Ugly

Visual inspection of traces.

Good

Marginal  
mixing

No convergence



Multi-modal posteriors.

Run as many chains as possible starting from 
significantly different places in the prior space.

Be paranoid! You can always be missing modes.



Physical models
Radial velocity 

Transit light curve.

Error model
Beyond the independent 

normal paradigm

Data analysis
Likelihood functions 

MCMC
p(D|✓, H, I)

di = mi + ei
data model error



Error models
Gaussian process regression



The Gaussian likelihood

lnL = �1

2

⇥
n ln(2⇡) + ln |K|+ r ·K�1 · r|

⇤

K: covariance of the data; n: number of data points; r = y - m: residuals vector

Alternatively, K can be generated by a kernel function k(xi, xj)

If K is diagonal (i.e. uncorrelated errors σi)

lnL = �1

2

"
n ln(2⇡) +

nX

i=1

ln�2
i + �2

#
/ �2





1.  ,  0.88,  0.61,  0.32,  0.14
0.88,  1.  ,  0.88,  0.61,  0.32
0.61,  0.88,  1.  ,  0.88,  0.61
0.32,  0.61,  0.88,  1.  ,  0.88
0.14,  0.32,  0.61,  0.88,  1.   

1.,  0.,  0.,  0.,  0.
0.,  1.,  0.,  0.,  0.
0.,  0.,  1.,  0.,  0.
0.,  0.,  0.,  1.,  0.
0.,  0.,  0.,  0.,  1.







1.  ,  0.88,  0.61,  0.32,  0.14
0.88,  1.  ,  0.88,  0.61,  0.32
0.61,  0.88,  1.  ,  0.88,  0.61
0.32,  0.61,  0.88,  1.  ,  0.88
0.14,  0.32,  0.61,  0.88,  1.   

1.,  0.,  0.,  0.,  0.
0.,  1.,  0.,  0.,  0.
0.,  0.,  1.,  0.,  0.
0.,  0.,  0.,  1.,  0.
0.,  0.,  0.,  0.,  1.







Using GP regression for activity

Planets and stellar activity in CoRoT-7 2525

Figure 5. Time series of the various parts of the total RV model for Model 2, after subtracting the star’s systemic velocity RV0. All RVs are in ms−1. Panel
(b): !RVrot (orange full line), !RVconv (purple dashed line) and !RVadditional (blue full line with grey error band). Panel (e): the total model (red), which is
the sum of activity and planet RVs, is overlaid on top of the data (blue points). Subtracting the model from the data yields the residuals plotted in panel (f).

MNRAS 443, 2517–2531 (2014)
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CoRoT-7

Haywood et al. (2014)
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Figure 12. GP model MAP fit to the publicly-available ↵CenB data from D12. All four seasons, comprising some 459 observations, were fit simultaneously,
i.e. using a single set of (hyper)parameters. The dots indicate D12’s data (with estimated errors, where applicable); the solid lines are model posterior means,
and the shaded regions denote ±� posterior uncertainty.

in widespread use (BIS, logR0
HK, etc.). An artificial neural network

might be useful for machine-learning such a quantity from a large
dataset.

(vii) Investigation of including a GP component to model cor-
related instrumental noise, rather than forcing such noise to be ar-
tificially absorbed by an additive white-noise component, as is the
case in our current framework.

In tandem with the above, as discussed in Section 4.4, we aim to
present in the near future a far more detailed and rigorous analysis
of the much-discussed ↵CenB dataset. We would like to inves-
tigate in which situations our fitted planet-free models lead to a
signal with a 3.24 d period in the RV residuals (this should happen
at least in some cases, since our framework should be able to re-
produce the model of Dumusque et al. as a special case); we would
like to undertake detailed studies of planetary detection limits us-
ing both our GP framework and a model akin to that used by Du-
musque et al., for synthetic data similar to the ↵CenB dataset;

and we would like to perform Bayesian model comparison (planet
vs. no-planet models) in order to draw definitive conclusions about
whether the data really suggest the presence of a planetary signal.
These analyses will form the focus of a separate paper.
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GP regression to correct K2 LC

Aigrain et al. (2016)

K2 systematics correction 2413

Figure 4. Same as Fig. 1, but for a light curve displaying quasi-periodic variations.

Figure 5. Final hyperparameter distributions for Campaigns 3 to 6, for the non-periodic cases (left) and the quasi-periodic cases (right).

The distributions for the white noise term show more variation
between campaigns, but this is due to the different magnitude distri-
butions of the targets. In the quasi-periodic cases, the final periods
do not necessarily match the initial guess taken from the Lomb–
Scargle results. The secondary peak in the period distribution at
around 30 d, corresponds to cases where the period and evolu-
tionary time-scales are similar. In such cases, the model reverts
to a random, rather than clearly periodic behaviour. Focusing on
periods below 30 d, we also note that the distribution for Cam-
paign 4 peaks at shorter periods, which may be a result of the
larger fraction of young (Pleiades and Hyades) stars observed in this
campaign.

We also examined the hyperparameter distributions as a func-
tion of location in the FOV, and noted that the hyperparameters
associated with the systematics component of the model depend

somewhat on distance from the satellite boresight. Incorporating
this information in the initial guesses may improve the detrending,
and will be considered in the future.

3 PH OTO M E T R I C P E R F O R M A N C E F O R
K2 DATA

The CDPP has become a de-facto standard for evaluating the photo-
metric precision of Kepler and K2 light curves. It is formally defined
as the inverse signal-to-noise ratio (SNR) of a reference transit sig-
nal of the corresponding duration, in parts per million (ppm), and
can be interpreted as the depth of a transit of the given duration to
exhibit an SNR of 1 (Christiansen et al. 2012). The KSOC transit
search pipeline systematically evaluates the CDPP on 3, 6.5 and
12-h time-scales. Since we do not have access to this pipeline, we

MNRAS 459, 2408–2419 (2016)
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Epilogue



Recap’ and conclusions

• Data is silent without a model. It can be treacherous with the 
wrong one. 

• "All models are wrong, but some are useful."  
• Physical models and error models are two faces of the same coin. 
• As data precision improves, so must our ability to model and 

analyse them (thank computers). 
• There is no shame in using other people’s code, but there’s 

nothing like writing (and debugging) your own.



Recap’ and conclusions

• The Bayesian approach is 
becoming the industry 
standard. 

• Powerful and flexible way 
of thinking about all things 
around data. 

• “If you’re doing chi2 
minimization, you could be 
doing something better.”



Recap’ and conclusions

• Stay tuned for: 
• effects of stellar activity. 
• planetary atmospheres. 
• more!
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A UNIQUE SOLUTION OF PLANET AND STAR PARAMETERS FROM AN EXTRASOLAR
PLANET TRANSIT LIGHT CURVE

S. Seager1,2 and G. Mallén-Ornelas3,4

Received 2002 June 11; accepted 2002 November 13

ABSTRACT

There is a unique solution of the planet and star parameters from a planet transit light curve with two or
more transits if the planet has a circular orbit and the light curve is observed in a bandpass where limb dark-
ening is negligible. The existence of this unique solution is very useful for current planet transit surveys for
several reasons. First, there is an analytic solution that allows a quick parameter estimate, in particular ofRp.
Second, the stellar density can be uniquely derived from the transit light curve alone. The stellar density can
then be used to immediately rule out a giant star (and hence a much larger than planetary companion) and
can also be used to put an upper limit on the stellar and planet radius even considering slightly evolved stars.
Third, the presence of an additional fully blended star that contaminates an eclipsing system to mimic a
planet transit can be largely ruled out from the transit light curve given a spectral type for the central star.
Fourth, the period can be estimated from a single-transit light curve and a measured spectral type. All of
these applications can be used to select the best planet transit candidates for mass determination by radial
velocity follow-up. To use these applications in practice, the photometric precision and time sampling of the
light curve must be high (better than 0.005 mag precision and 5 minute time sampling for a two-transit light
curve).
Subject headings: binaries: eclipsing — planetary systems — techniques: photometric

1. INTRODUCTION

Planet transit searches for close-in extrasolar giant planets (planets with orbital semimajor axes !0.05 AU) promise to be
the next big step forward for extrasolar planet detection and characterization. Every transiting planet discovered will have a
measured radius. A radius is necessary to constrain the planet evolution and migration history and also provides constraints
on planet composition and atmosphere through evolutionary models. The importance of measured radii for a number of
close-in giant planets cannot be overstated. Recent theoretical studies (Guillot & Showman 2002) of planet evolution in close
proximity to a parent star are unable to match the radius from the preferred model with the measured radius of the transiting
planet HD 209458b to 20%–30%. This implies that there are atmospheric or interior physical processes taking place that are
not currently known.Manymore planetary radii will be needed to help fully resolve this discrepancy.

In addition to radius, the absolute mass of transiting planets will be determined from combined transit and radial velocity
measurements. Note, however, that for the current state of theoretical models a precise radius measurement (as described
above) is more important than a precise mass. Minimummasses (fromM sin i), or even just a census of approximate planetary
masses, are sufficient constraints for the current state of planetary formation and migration theories (with the exception of
studies of planetary dynamics of known extrasolar planet systems).

There are many other benefits of planet transit searches. Planets can be discovered around distant stars and in a variety of
environments. Because of their special geometry, many follow-up observations of transiting planets are possible, such as
atmosphere transmission spectroscopy (note the first extrasolar planet atmosphere detection by Charbonneau et al. 2002),
search for moons and rings (Brown et al. 2001), and detection of oblateness and the corresponding constraint on rotation rate
(Seager & Hui 2002). Note that the photometric signatures of moons, rings, planetary oblateness, and atmospheric refraction
are much smaller than the transit signature itself and so will have a negligible effect on basic parameters derived from a planet
transit light curve.

Although no planet candidates discovered by the transit method have yet been confirmed by mass measurements, many
searches are currently ongoing. The OGLE-III planet search (Udalski et al. 2002a, 2002b) has observed numerous high-
precision transit light curves from objects with small radii, including several potential planets. The EXPLORE search
(Mallén-Ornelas et al. 2003) has four potential planet candidates based on both photometric light curves and follow-up radial
velocity measurements (Yee et al. 2003; Mallén-Ornelas et al. 2002; G.Mallén-Ornelas et al. 2003, in preparation). The Vulcan
planet search (Borucki et al. 2001) has some published results on transit candidates that, with radial velocity measurements,
were determined to be eclipsing binary stars (Jenkins, Caldwell, & Borucki 2002).
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Transits and Occultations

Joshua N. Winn
Massachusetts Institute of Technology

When we are fortunate enough to view an exoplanetary system nearly edge-on, the star and planet
periodically eclipse each other. Observations of eclipses—transits and occultations—provide a bonanza
of information that cannot be obtained from radial-velocity data alone, such as the relative dimensions
of the planet and its host star, as well as the orientation of the planet’s orbit relative to the sky plane and
relative to the stellar rotation axis. The wavelength-dependence of the eclipse signal gives clues about the
the temperature and composition of the planetary atmosphere. Anomalies in the timing or other properties
of the eclipses may betray the presence of additional planets or moons. Searching for eclipses is also a
productive means of discovering new planets. This chapter reviews the basic geometry and physics of
eclipses, and summarizes the knowledge that has been gained through eclipse observations, as well as the
information that might be gained in the future.

1. INTRODUCTION

From immemorial antiquity, men have dreamed of a
royal road to success—leading directly and easily to some
goal that could be reached otherwise only by long ap-
proaches and with weary toil. Times beyond number, this
dream has proved to be a delusion.... Nevertheless, there
are ways of approach to unknown territory which lead sur-
prisingly far, and repay their followers richly. There is
probably no better example of this than eclipses of heav-
enly bodies. — Henry Norris Russell (1948)

Vast expanses of scientific territory have been traversed
by exploiting the occasions when one astronomical body
shadows another. The timing of the eclipses of Jupiter’s
moons gave the first accurate measure of the speed of light.
Observing the passage of Venus across the disk of the Sun
provided a highly refined estimate of the astronomical unit.
Studying solar eclipses led to the discovery of helium, the
recognition that Earth’s rotation is slowing down due to
tides, and the confirmation of Einstein’s prediction for the
gravitational deflection of light. The analysis of eclipsing
binary stars—the subject Russell had in mind—enabled a
precise understanding of stellar structure and evolution.

Continuing in this tradition, eclipses are the “royal road”
of exoplanetary science. We can learn intimate details about
exoplanets and their parent stars through observations of
their combined light, without the weary toil of spatially re-
solving the planet and the star (see Figure 1). This chapter
shows how eclipse observations are used to gain knowledge
of the planet’s orbit, mass, radius, temperature, and atmo-
spheric constituents, along with other details that are other-
wise hidden. This knowledge, in turn, gives clues about the
processes of planet formation and evolution and provides a
larger context for understanding the properties of the solar
system.

An eclipse is the obscuration of one celestial body by an-
other. When the bodies have very unequal sizes, the passage
of the smaller body in front of the larger body is a transit

and the passage of the smaller body behind the larger body
is an occultation. Formally, transits are cases when the full
disk of the smaller body passes completely within that of
the larger body, and occultations refer to the complete con-
cealment of the smaller body. We will allow those terms to
include the grazing cases in which the bodies’ silhouettes
do not overlap completely. Please be aware that the exo-
planet literature often refers to occultations as secondary
eclipses (a more general term that does not connote an ex-
treme size ratio), or by the neologisms “secondary transit”
and “anti-transit.”

This chapter is organized as follows. Section 2 de-
scribes the geometry of eclipses and provides the founda-
tional equations, building on the discussion of Keplerian or-
bits in the chapter by Murray and Correia. Readers seeking
a more elementary treatment involving only circular orbits
may prefer to start by reading Sackett (1999). Section 3 dis-
cusses many scientific applications of eclipse data, includ-
ing the determination of the mass and radius of the planet.
Section 4 is a primer on observing the apparent decline in
stellar brightness during eclipses (the photometric signal).
Section 5 reviews some recent scientific accomplishments,
and Section 6 offers some thoughts on future prospects.

2. ECLIPSE BASICS

2.1 Geometry of eclipses

Consider a planet of radius Rp and mass Mp orbiting a
star of radius R⋆ and mass M⋆. The ratio Rp/R⋆ occurs
frequently enough to deserve its own symbol, for which we
will use k, in deference to the literature on eclipsing binary
stars. As in the chapter by Murray and Correia, we choose
a coordinate system centered on the star, with the sky in
the X–Y plane and the +Z axis pointing at the observer
(see Figure 2). Since the orientation of the line of nodes
relative to celestial north (or any other externally defined
axis) is usually unknown and of limited interest, we might
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Main references - Bayesian



Main references - Gaussian processes

Available online 
http://www.gaussianprocess.org/gpml/



Code

Bayesian evidence computation

Gaussian process regression

Spot LC simulator

github.com/exord/bayev

github.com/exord/gp

github.com/exord/lcspotter

pypi.python.org/pypi/pygpr

pypi.python.org/pypi/lcspotter


