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Data modelling in the scientific method

Fig. adapted from
Gregory (2005)

Deductive inference
(predictions)

Testable Observations

(data)

hypothesis
(theory)

Statistical inference
(hypothesis testing,
parameter estimation)
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The two-body problem

rr — mQI'z

Murray & Dermott “Solar System Dynamics”



The two-body problem

m1r1 + moro = 0

Murray & Dermott “Solar System Dynamics”



The two-body problem

m1ry1 + morg = 0

iIntegrate
miriy + more = at + 0

define
mirq — moro

mq +— Mo

at +
ma 4+ mo

The centre-of-mass is stationary or moving in a straight line with constant velocity.

Murray & Dermott “Solar System Dynamics”



The two-body problem - Relative orbit

Now consider the motion of m» relative to m;
r =719 — I'7

P =1y — 1)

mimo .
Fi1=4¢ r =miriy
3

mimo .
Fo=-¢ 3 T = Mmarz

Divide through: F1 by m;, and F2 by m:
and combine

. r
I‘+g(m1 +m2)r—3 =

Equation of

relative motion

Murray & Dermott “Solar System Dynamics”



The two-body problem - Relative orbit

r .
. Sl Equation of
£ Gmy +ma) 5 =0

Take vector product with r

r xr =10 » I XTr =h = constant

Polar coordinates

r=rko h=r%02
=11+ rio

- his a sort of angular momentum.
- The movement of m; with respect to m; lies in a plane.

Murray & Dermott “Solar System Dynamics”



The two-body problem - Relative orbit

r .
. Sl Equation of
£ Gmy +ma) 5 =0

Scalar equations obtained

r— 7.;—7“(92:—% with ,uzg(ml—l—mg)
T
R d /.. |
0 — P (r 9) =0 conservation of angular momentum.
r — P where w and e are
1 + ecos(f — @) integration constants

and p = h*/u

Murray & Dermott “Solar System Dynamics”



The two-body problem - Relative orbit

where @w and e are
integration constants

and p = h*/u

General equation of a conic in polar coordinates. _ ellipse circle

circle € = 07 p—=a O O parabola
< /

hyperbola

P
parabola e=1; p=2q T

ellipse 0<e<l, p=a(l—e?)

hyperbola e > 1; p=a(e* —1)

Murray & Dermott “Solar System Dynamics”



The two-body problem - Elliptical orbits

. a(l — e?)

14 ecos(d — @)

Maximum and minimum distances:

A
0 =w

pericentre  Tperi = a(l —€)

0=w+m

apocentre
Tapo = a(1 + €)

Measure angles from pericentre.

Define true anomaly: v =0 — w

. a(l — e?)

1+ ecos(v)

Murray & Dermott “Solar System Dynamics”



The two-body problem - Kepler’s laws

h =120 = \/pa(l — e2) = constant

It can be shown that the area swept by my around m; per unit time is
proportional to A.
d4a 1

— = —h
= > Second Law of Kepler

The area swept over a period P is the area of the ellipse A = wab

mab 1 ma*(1 —e*) 1
- — —h > = — 1 — 2
P 2 P2 el =€)
A2
P? = 2" 43  Third Law of Kepler
L

Murray & Dermott “Solar System Dynamics”



Where is time?

600

A
a/(]. - 62) B E l : : ’ b ¢ 1
,r. — »% 200:— ’ ) ;_ -‘ | :. :
1 4+ ecos(v) ARV AN A AN ANA R
.2005— ¥ ;‘ v t/ %
Mean 2T
M= —I(t—T1 T Time of periastron passage
anomaly P ( ) P P J
R N1 circumscribed
circle

(a)

(b)

Murray & Dermott “Solar System Dynamics”



Where is time?

Mean 2T
anomaly M D (t—17) Time of periastron passage
Kepler's M = E — esin(E) Transcendental; requiere
equation B iterative methods to solve.

i 1 E
Eccentricto (5) _Jilte (_)
true anomaly 2 1—e 2

. a(l — e?)

1+ ecos(v)

Murray & Dermott “Solar System Dynamics”



The two-body problem - Barycentric orbit

remember
miry -

T -

new vectors
of interest

Ri=r1 — Ro =19 —

tors lie In the same line
m1 R moR-, = (0  V€° e eart ’
11+ ma ki with opposite directions.

Murray & Dermott “Solar System Dynamics”



The two-body problem - Barycentric orbit

&
|

—r —
Ra =1y —

m1R1 -+ m2R2 =0

we can write scalar
equations

™Mo mi
}%1 = T f%g = T

mi1 + Mo mi + Mo

Question: what would be the barycentric motion of m; and m; look like?

Murray & Dermott “Solar System Dynamics”



The two-body problem - Barycentric orbit

Question: what would be the barycentric motion of m; and m. look like”

M9 Ty
R, = A Ry = A

mi1 + Mo mi1 + Mo

Answer: the orbits are a scaled-down version of the relative orbit.

Gn=—"% 4 gy = —1 g4 i
1= 2 = ]

mi + Mo mi + My Fnzjiii HRRR
the orbital period and eccentricities are / \

identical, but the arguments of pericentre f________
differ by 180 degrees. “a,

Murray & Dermott “Solar System Dynamics”






The two-body problem - 3D orbits

* The motion of the bodies is confined to a plane (z =0).
e \Want to transform to reference system (X, Y, Z).
e Three rotations to go from (x, y, z) to (X, Y, Z):

* A rotation around z.

* A rotation around X. 1z
* A rotation around z. | orbit
™~
»N<f’
focus \—‘3 _________ .
/4/_53\ @ f,f"“‘ ¥

reference
plane

ascending

/
reference / / node
direction # X

Murray & Dermott “Solar System Dynamics”



The two-body problem - 3D orbits

e Three rotations to go from (x, y, 2) to (X, Y, Z): k 7
l
* A rotation around z. :
|
l

orbit
* A rotation around the new axis x. 5
* A rotation around the new axis z. foc,&é';’: _________
/—si\\s\ w Ei}“-—--\. s Y
o \\ / pericentre
A X reference
/ A\ plane
X XL ascending
. / node
S reference
3/- - I)E{I):if)l Z/ dhmimn X
A z
cosw —sinw 0 1 0 0 cos{) —sin{) O
P{=|sinw cosw O P,=|0 coslI —sinl Ps = |sinQ? cosf2 0
0 0 1 O sin/ cosl/ 0 0 1

Murray & Dermott “Solar System Dynamics”



The two-body problem - 3D orbits

X T
Y | =P3sP2Py |y
Z Z

cosw —sinw 0 1 0 0 cos§{) —sin{2 0
P{=|sinw cosw 0 Po,=10 cosI —sinl Ps = |sinQ? cos{) O

0 0 1 0 sin/ cosl 0 0 1
cos(V 4+ w) cos 2 — sin Qsin(v + w) cos [ I COS U/
r | cos(v 4+ w)sin 2 4 cos Qsin(v + w)cosl | = PgPaPy | rsinv
sin(v + w) sin [ 0

Murray & Dermott “Solar System Dynamics”



The two-body problem - 3D orbits

None of the methods are sensitive to the orientation of the orbit in the
plane of the sky.

We can therefore simplify by considering the X axis is coincident with
the line of nodes (€2 =180 deQ).

cos(v + w) cos ) — sif Q sidosy b egs [ I COS V
r | cos(v+ w)sinQ +cosLsin(v +w)cosl | = P3gPoPy | rsinv

sin(v 4+ &) sim{v + w) sin [ 0

X = —rcos(v + w) 2
a(l —e

Y —T SiIl(V -+ CU) cos [ r = ( )

Z = rsin(v+w)sinl 1 + ecos(v)

Murray & Dermott “Solar System Dynamics”



The two-body problem - RV amplitude

Now, we are interested in the motion of the star with respect to the
centre of mass of the system. Substituting a by a;

1 — 2
Z*:( e a) U=e) sin(v + w) sin [
1 4+ ecosv

2 a’y/1 — e2

Deriving and using the fact that © =60 = h/r? = - -
.

Ve =Vo+ K, |cos(v + w) + ecosw]

o <27TG>1/3 1 Mo sin [
4

P 1 — e? (ml m2)2/3




Real life nuisance - the Earth moves

One of the most stable HARPS stars.

1000 [ -

30 km/s !!
ABerv [m/s]

0.5

- Normalized Power

62(

10 100 1000
Period [d]



Physical Models

Transits



Transiting planets

I Al Il 1V

Flux

Seager & Mallén-Ornelas (2003) Tlme
Mandel & Agol (2002)



Transiting planets - transit geometry

Flux

Seager & Mallén-Ornelas (2003) Tlme
Mandel & Agol (2002)



Transiting planets - transit geometry

A four-parameter model

P, AF, tT, tF

.

In principle, seven physical
parameters

]V[%y-[z*
MP’ Rp

1,€,T0

Only some combinations of
%F these are obtainable from the

light curve alone (degeneracy).
Seager & Mallén-Ornelas (2003)

Seager & Mallén-Ornelas (2003)
Mandel & Agol (2002)



Transiting planets - transit geometry

In the circular case, these combinations are:

]%P
P _ \/AF
R,

b =

&
R,

. (1_\/ﬁ)Q—SmQ(tFW/P)/SiHZ(tTW/P)(1_|_\/E) 1/2
COS 1 = 1 — sin®(tpn/P)/ sin’(trmw/P)

q (14—\/@)2 — b2 [1 — sin®(trm/P)]
R, sin? (tr7/P)

Seager & Mallén-Ornelas (2003)



Transiting planets - eccentricity effects

Complicated algebra arises when eccentricity is included.
Inversion is no longer easy, but the forward equations are given,
approximately, by Winn (2008)

P R VJO+R/R? 0] yize

T a Sin 2 1 +esinw

.

bR,= a cosi

P [rJo-R/R?-8| yicee | e .6

T a Sin 2 1 +esinw

l
|

{
t

Winn (2008)



Transiting planets - eccentricity effects

Inversion is possible for non-grazing transits under the
condition R, < R, < a

(1~ VAF) — (tp/tr)* (1 + VAF)

b? =

1 —(tr/tr)?
R, T \/t%—t% 1 +esinw
a 2AFY4 P V1= e2

Winn (2008)



Transiting planets - eccentricity effects

Transit Duration/hours

3.0

2.5

2.0 1

1.5 A

1.0 4

0.5 1

0,0

Fixed w = 20°

0.1 0,2 0.3 0.4 0. 5 .G 0.7 0.2
Eccentricity
— =80 deg — =81 deg — =82 deg — i=83 deg — i=84 deg — =385 deg
—— =86 deg — =87 deg — =88 deg — =89 deg — =90 deg

Kipping (2008)



Transiting planets - eccentricity effects

4.5 4 Fixed 7 = 860

Transit Durationhouwrs
-
™

1C0 : “ -
Position of perlastron/degrees

Kipping (2008)



Transiting planets - stellar bulk density

Directly from Kepler’s third law.

N R, ° 3w a\’

P«T\R,) "~ GP2 \R,
Importantly, in the common case that R,/R+ << 1:
3

S a
Px ™ 5l
GP? \ R,

Px obtained from transit geometry. Caveat: orbital eccentricity.

Seager & Mallén-Ornelas (2003)



Analytical light curve expression

Flux

Time

flux = f(time)



Analytical light curve expression

flux = f(z)
z =d/R,
d=g(t)

Mandel & Agol (2002)

Analytical expressions for the light loss as a function of z and p = R,/R;
are given by Mandel & Agol (2002), for a uniform source and for
nonlinear limb darkening laws (see also Giménez 2006).



Analytical light curve expression

Uniform source

F(p, Z) =1- )‘(pa Z)

; 1 +p<z,
1 47 — (1 + 22— p?)?
b%0+m—~J ( P7) ,H—qﬂ<z§l+p,
N(p,2) =4 T 4
8 z<1—p,
I, z<p-—1,

Mandel & Agol (2002)



Computation of d as a function of time.

Back to Cartesian description of relative orbit

X = —f.rcos(u—l—w) a(1 — €2)
Y = —rsin(v+w)cosl r =
Z = rsin(v+w)sinl 1+ ecos(v)

Planet-to-star centre distance is easily written as

a(l —62)

d=\vVX?4+Y?2 =
\/ + 1 +ecosv

\/1 — sin2(v + w)sin® I



Real life nuisance - integration smearing

\\'\ ' :"'
‘\ T ,"'
< T
-
)
O
N
=
=
@)
Z.
\ ]
) [ |
N\ -
\\ : : "
\, A
26000 —4000 —-2000 O 2000 4000 6000
Time [s]

Kipping et al. (2010)



Real life nuisance - integration smearing

Normalized flux

26000 —4000 —2000 0

5.6
5.4
5.2
5.0

X
0T 48
(4v]
4.6
4.4
4.2
4.0

0
O L

0 10 11 12 13 14 15

\ ; VA 0.110
'\T' | "
—> 0.108
N 108
| 0.106} } ! +
o
= 0.104 | ]‘
o
] | 0.102
L0 [S]‘ 2000 4000 6000 0.100 1
Kipping et al. (2010) 0% 3 4 5 6 7 8
oversampling
i . i
i . s _
i ® 1 i
i e o 15QLC, original fit]|
I e e 3quarters |
e ® o 15 quarters i
0 1 2 3 4 c 7 8 9 10 11 12 13 14 15

oversampling

Credit: J. Almenara



Physical Models

Beyond the basics



Improving model realism.

“All models are wrong,
but some are useful.”

George Box

» Phase curves, secondary eclipses.

» Rossiter-MclLaughlin effect.

 Transit timing variations.
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Optical phase curves

Relative Flux

Relative Flux

0.9980

0.9960

0.9940

1.0002

1.0001 ks

0.9999

0.9998

b

A

|

-

| | |

|

1.0000 m-_\ (-.M

|

\

|
0 0.5 1

Orbital Phase (Days)

Borucki et al.

(2009)



IR phase curves

HD189/33 b, a Hot Jupiter Enutson et al. (2007)

1_01 L DL L L L L L e

M iy, .m«»wsmwm&?'f“”‘w'm“\ P,

.
. 8
S

KW

1.00

0.99

Relative Flux

0.98

0.97

1.003

1.002

1.001

Relative Flux

1.000

b

0.999E........ e i e e b e

-0.1 0.0 0.1 0.2 0. 0.4 0.5 0.6
Orbital Phase




Optical and IR phase curves

55 Cnc e, a Super-Earth on a P=0.74-day orbit

400 —

FD/F' (p.p.m.)

0.2
Orbital phase

Demory et al. (2016)




Rossiter-MclLaughlin effect

Radial Velocity [m s™']

-2 -1 0 1 2

Time [hr]

Rodial Velocity [m s™]

g -1 0 1 2
Time [hr]

Radial Velocity [m s™']

- -1 0 1 2
Time [hr]

Credit; A. Triaud



ossiter-McLaughlin effect
HD2094]]5§ b H
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Rossiter-McLaughlin effect

HD209458 b

IIIII

~ ; Amplitude (Rp/Rs)z-vsinIE
A p 4 s @ |

RV (km.s-




First measurements: alignment galore

-3 CoRoT-2b i\ ; i
. (Bouchy et al. 2008) u
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First measurements: alignment galore

Al 0,
1 By 2008, the obliquity of uboui Y5 of the known irunsmng
| planets had been measured.

"

Jik
All orbits were aligned and prograde, in agreement with
the expected result of planetary formation and migration
in a protoplanetary disk

DD 1475080 N
2 (Winn et al. 2007
700 _ :

—-0.2 —-0.1 0.0 0.1 0.2 > 0.05 0.05 y
NAave eim~a m~jd-"* _ : - . . - :
BRI~ ——- —e—— S——— - - e e A ERTEE,



The first case of a misaligned system, X0-3 b
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A long-period transiting planet in a very

eccentric misaligned orbit

orbital phase

0.052 0.053 0.054 0.055

T

- i : | : i f
. 403F i + +' i ! i £
PN: ! ! s | :
2 4.02F 0% 5 i ; =
> B\ oy TS R R
8 4.01F | N l’ D |1 ¢ %;% T P IR -
Q>J E l ! !' q:“/". Y . Ad | ! P :
— - I N : P Y Y ‘_'i“?'(s. | T B
T 4.00F SOPHIE (février 2009) + ; :
2 : Keck (juin 2009) ; | | =
3.99 & SOPHIE {(janvier %010) : I ; E
= — — l N T — F— ' | e, , l. — =

: |

|

1.000

0.995

T 1 T l T T T T

0.990 -

Spitzer normalized photometry

g

Spifzer, 1137]4‘Jun‘ 2010 L

. « )
4 . \
csssssssssssas l ............ A . A SRR AN
...........................................................
. '

11 1 1 l 1 1

130 135 140
hours after periastron

Hébrard, Désert, Diaz, et al. (2010)

4.4
(2]
~
:5/ 4.2
>
5 40
(]
>
< 3.8
5
°

3.6

T 6' ]
o E i A
- M -
3 ' | E
C ol ]
C ]
]
C g ]
. : .
]
3 ] E
Li’ U 1
i .

-0.4 -0.3 -0.2 -0.1

0.0 0.1 0.2 0.3 0.4 0.5
orbital phase

HD 80606




Physical Models

Transit timing variations



Transits + TTV —> density
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Kepler
multi-planet
Systems

4696 Kepler transiting
planet candidates

1826 (39%) in
multi systems

234 (13%)
In systems
with TTVs

[112 systems]

[794 systems]

[3364 systems]

TTVs: transit timing variations



Missing compact planetary systems.
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Planet Mass (Mg, (Motalebi et al. 2015
updated from

(precision on the mass < 20%) Dressing et al. 2015)



Planet density from light curve data

The planetary density can be obtained directly, d b e
: : 2.0 — — ———
without going through M= or R+« | 0% FO
1.8 b 75% H,0 - 25% MgSiO;
M - 50% H20 - 50% MgSiO;
. P 3 1.6 | 100% MgSiOs
pp . 3 ﬂ-Rp L4} 100% Fe
D M, e 12
%WR% < 1.0 _
_3 0.8
p — Px n |
Z\ 1* R* 04 1
0.2 _— —_ ————
0.01 0.1 1 10
M /M,

The masses and radii cannot be obtained independently.
Gravity is scale invariant, i.e. under the transformation:

—1
M =a’M d = ad G] = <_> g2



Kepler
multi-planet
Systems

4696 Kepler transiting
planet candidates

1826 (39%) in
multi systems

234 (13%)
In systems
with TTVs

[112 systems]

[794 systems]

[3364 systems]

TTVs: transit timing variations



Photo-dynamical modelling

* IO*
M;/M,, R;/R.,a;/R.,
Gj,ij, Moj,w]', Qj
(or a combination thereof),
at a giventime, forj=1, ..., Npa

Model .| | Time array ¢
parameters :

PhotqdyQ@mical

N-body “modgl |
integration \ =
‘ Light curve Light curve
f(t), ttv, ;tadv, data f
Positions and velocities

), vt




Kepler-117, two planets far from resonance

K, =13

IndnnduaITTVrneaS

Almenara,

P, = 18.8d
P. =50.8d

Diaz, Mardling, et al. (MNRAS,

Pe

— = 2.7
Py

Photodynamic model posterior TTVs

2015)

A

?}%ﬁ%‘? % M

A

15

10 b

TTV [min]

g#*%“#+*# atﬁﬂ+h#g+#+# **#++

0.0 0.2 0. 4 0 6 0.8
Phase (P = 50.79 d)
2014)

Bruno, et al. (A&A,

#
¢ ¢
) 4

o
L

0.4 0.6 0.8
Phase [P = 50.79 days]

1.0

Stellar and planetary densities obtained with 2% - 5% precision,
without RV, and independently of stellar models.

(Mp+Me)/M, ~ 0.4%



Photo-dynamical modelling

* IO*
M;/M,, R;/R.,a;/R.,
€j,lj, M()j,w]', Qj
(or a combination thereof),
at a giventime, forj=1, ..., Npa

Model .| | Time array ¢
parameters :

Photodynamical

N-body model
integration

‘ Light curve Light curve
f(t), ttv, ;tadv, data f

Positions and velocities

), vt

RV curve RV data
v(t) V.

1




Kepler-117, two planets far from resonance

Almenara, Diaz, Mardling, et al. (MNRAS, 2015)

As a bonus, SOPHIE RVs break the Newtonian degeneracy:.

—-12.80 ¢

- |

A *40 m/s
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»  100F : . ! :
E -’)§ B, . + ’ + ¢ + ° L I ]
Q 100t t ! ; &
@ 6200 6300 6400 6500 6600

BJD - 2,450,000

Masses and radii are imprecise due to poor RV errors, but
independent of stellar models.

Simulations of RV data with 1-m/s precision lead to masses
and radii at a few percent precision.



Limitations

Analytical TTVs

+ Computing time.  ——————————————————————p |
PHITY analysis

- Complex parameter space (usually multi-modal),  ———p |
Bayesian model

- Additional potential planets in the system. ——» comparison
- Incomplete model:
© | - | .
Light-time effects, —————————p Usually

» Post-Newtonian / GR, ———————————» negligible

. Stellar activity, —  » (Gaussian process
. regression
° Tides.



Stellar activity.

All models are incomplete.

Stellar jitter Stellar activity Instrumental eftects
PSRN ,
v + Spots - outliers

+ cycles - false positives

dzzmz—|—6@



€;

error

Data analysis

Likelihood functions
MCMC

p(D\0, H,I)



Data analysis

The Bayesian revolution



Statistical inference

Fig. adapted from
Gregory (2005)

Deductive inference
(predictions)

Testable Observations

(data)

hypothesis
(theory)

Statistical inference
(hyp. testing,
parameter estimation)



Statistical
Inference
requires a

probability theory

Frequentist

Bayesian



Thomas Bayes (1701 - 1761)

First appearance of the product rule (the base for the

Bayes' theorem; An Essay towards solving a Problem in the
Doctrine of Chances).

D Hia
p(Hi|1, D) = Pprs - p(Hi| 1)

Pierre-Simon Laplace (1749 — 1827)

Wide application of the Bayes' rule. Principle of insufficient

reason (non-informative priors). Primitive version of the
Bernstein—von Mises theorem.

Laplace’s “inverse probability” is largely rejected for ~100 years.
The reign of frequentist probability. Fischer, Pearson, etc.



Harold Jeffreys (1891 — 1989)

Objective Bayesian probability revived.
Jeffreys rule for priors.

(1940s - 1960s)
R. T. Cox
George Pdlya
E. 1. Jaynes

Plausible reasoning. Reasoning with uncertainty.
Probability theory as an extension of Aristotelian logic.
The product and sum rules deduced for basic principles.
MAXENT priors.

See E.T Jaynes. Probability Theory: The Logic of Science.

http:/www-biba.inrialpes.fr/lJaynes/prob.html



http://www-biba.inrialpes.fr/Jaynes/prob.html

Statistical inference

Fig. adapted from
Gregory (2005)

Deductive inference
(predictions)

Testable Observations

(data)

hypothesis
(theory)

Statistical inference
(hyp. testing,
parameter estimation)
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Two basic tasks of statistical inference

Learning process

(parameter estimation)

Decision making

(model comparison)



Learning process

Bayesian probability represents a state of

knowledge

9_ . parameter vector Prior Posterior
Hi: hypothesis

I:inf i .

5 ot Discrete space

(hypothesis space)

p(H;| 1) - p(H;|/, D)



@ : parameter vector
Hi: hypothesis

. I: Information
Learning process D' data

Enter the likelihood function

_ p(D|0, H;, ) _
n(0|H;, I, D)= -n(0|H,;, |

Posterior Prior

p(O|D, H;, 1) o< Lo(H;) - p(O|H;, )

The proportionality constant has many names: marginal
likelihood, global likelihood, model evidence, prior
predictive. Hard to compute. Important.



Optimising the learning process

* The likelihood needs to be selective for the learning
process to be effective.

L Prior - Likelihood
L p(Ho| My, 1) L p(D|Ho, M, 1)
Likelihood | || Prior
p(D[Ho, My, 1) 1 || p(Ho|My,1)
A\ |
6 l
(5,\@ « | Posterior Il || Posterior | OO
.0 {etolD ) 1|1 p(HolD. M, ) 1.6 7
\ Q N 1 2 7
PN <@l |~ %, %
O \@ (9/&
6\0
N

Parameter H, P Gregory (2005)  Parameter H,



Data analysis

Likelihood functions



0 : parameter vector
Hi: hypothesis

The likelihood function . Information

_ p(l?\é, Hi,l) _
p(O\H;, [, D)= -p(0\H;, |
(6] ) p(D|H;, ') (6] )

Posterior Prior

p(O|D, H;, 1) o< Lo(H;) - p(O|H;, )

The likelihood is the probability of obtaining data D, for a given
prior information / and a set of parameters 0.

Remember, likelihood is not a probability for parameter vector 6
(for that you need the prior)




O : parameter vector
Hi: hypothesis

Likelihood function ': Information
D: data
Ingredients
: Statistical
PhyS1ca1 (non-deterministic) Eroror_
model model statistics
e Analytic model * Unknown errors (jitter) e Covariances
* Simulations * Instrument systematics * Non-Gaussianity
. ...  Complex physics (activity, ...) e ...
. 2
— imdep.,gauss. X

p(DI|0, H;, ) = Lo(H;) X exp—



Constructing the likelihood

The data:
D =D, D,..D, ={D;}

D;: the i-th measurement is in the infinitesimal range y; to yi + dy;

The errors:
Ei: the i-th error is in the infinitesimal range e; to e; + de;

p(E;10, H, ) = fp(e;) The probability distribution of statement E;

Most used fx

fE(e’L) — N(ngg)

The model:

M;: the i-th error is in the infinitesimal range m; to m; + dm;

p(M;|0, H, ) = far(m;) The probability distribution of statement M;



Constructing the likelihood

The data:
D =D D,...D, ={D;}

We want to build the probability distribution:
p(D|‘97H7 ) — p(D17D27 °°°7Dn‘(97H7 )

Remember: Y; = M; + €;

It can be shown that:

p(D,|6. 1, 1) = / dms far




Constructing the likelihood

(D6, H, 1) = / dmi far(ms) fo(y: — mi)

But for a deterministic model, m; is obtained from a (usually analytically)
function f without any uncertainty (say, a Keplerian curve for RV measurements)

m; = f(ﬂfz"@)
far(mg) = 0(m; — f(x4]0))

Then: p(D;|0,H,T) = /quz o(m; — f(xi]0)) fE(y: — my)
= fe(yi — f(z:|0) = p(E:]0, H, )

p(D|97H7 ):p(DlaDQw“an‘HaHa ):p(E17E27°“7En‘6’7H7 )




Constructing the likelihood

p(Dw,H, ):p(Dl,DQ,...,Dn|9,H, ):p(El,EQ,...,En‘H,H, )

(Gaussian likelihooo

lnﬁz—é[nln(Qw) In|K|+r- K '-rT|

K: covariance of the data; n: number of data points; r = y - m: residuals vector



Constructing the likelihood

p(D|97H7 ):p(D17D27“°7D7’L|97H7 ):p(ElaEQw“aEn‘HaHa )

Now, for independent errors (K is diagonal)

p(D‘97H7 ):p(ElaEQV"?En‘HaH? )

1
ME:—§7HM%)+z}mﬁ+X2aW2




Constructing the likelihood

Back to the convolution equation

p(D;|0, H, ):/dmi far(m) fe(ys —myg)

For a non-deterministic model, M, is distributed:

M;: the i-th error is in the infinitesimal range m; to m; + dm;

p(M;|0, H, ) = fyr(m;) The probability distribution of statement M;

E.g. adding instrumental error / resolution:

far(mi) = N(f(2:]0), o5t



Data analysis
emangnce priors



DID THE SUN JUST EXPLODE?
(ITS NIGHT, S0 WERE NOT SURE,)

LETS TRY.
CETECTOR! HAS THE

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

THEN, ITROWS TWO DICE. IF THEY
BOTH COME UP SiX, IT UES TO US.
OHERWISE, IT TELLS THE TRUH.

&A/GWEM’

ralf

FREQUENTIST STATISTICIAN: BAYESAN STATISTIOAN:
THE PROBABUITY OF THIS RESULT
HAPPENING BY CHANCE 15 320077 BET YOU $50
IT HASNT.

SINCE p<0.05, T CONCLUDE
THAT THE SUN HAS EXPLODED.

ia

)

O

xkcd.com



http://xkcd.com

0 : parameter vector
Hi: hypothesis

. I: Information
Learning process D' data

The role of the prior distribution

p(D‘H—aHZa ) . N

Posterior




Prior probabilities

p( H : | ) Hi: hypothesis (can be continuous).
¢ I Information

* Prior information / is always present:

 The term “prior” does not necessarily mean “earlier in time”.
* Philosophical controversy on how to assign priors.

e Subjective vs. objective views.

* No single universal rule, but a few accepted methods.

 Informative priors. Usually based on the output from previous
observations. (What was the prior of the first analysis?).

* Ignorance priors. Required as a starting point for the theory.



Assigning i1gnorance priors

1. Principle of indifference.

Given n mutually exclusive, exhaustive hypothesis, {H;}, withi =1, ..., n,

the Pol states:
p(H;|l) =1/n



Assigning i1gnorance priors

2. Transformation groups. Location and scale parameters.

For a certain type of parameters (location and scale), “total ignorance”
can we represented as invariance under certain (group of) transformation.

Location: “position of highest tree along a river.”
Problem must be invariant under a translation.

X' =X+c¢
p(X|/)dX = p(X'|])dX" =
p(X'|1)A(X +¢) = p(X'|/)dX

p(X|/) = constant Uniform prior.



Assigning i1gnorance priors

2. Transformation groups. Location and scale parameters.

For a certain type of parameters (location and scale), “total ignorance”
can we represented as invariance under certain (group of) transformation.

Scale: “life time of a new bacteria” or “Poisson rate”
Problem must be invariant under scaling.

X' =aX
p(X|/)dX = p(X'|])dX" =
p(X'|I)d(aX) = ap(X'|/)dX

constant

“Jeffreys” prior.




Assigning i1gnorance priors

3. Jeffreys rule.

Besides location and scale parameters, little more can be said using
transformation invariance.

Jeffreys priors use the Fisher information; parameterisation invariant, but
strange behaviour in many dimensions.

d*log £
d6?

Observed Fischer information: [ 5 —

But D is not known when we have to define a prior. Use expectation value

over D. i i
d2 log ,CD
d6-




Assigning i1gnorance priors

3. Jeffreys rule says:

Examples:
* Mean of Normal distribution (¢4) with known variance O2.

p(p|o?, 1) o< constant

e Rate A of Poisson distribution.
p(A\[1) o< 1/V\

e Exercise: Scale of Normal with known mean value?



Assigning i1gnorance priors

3. Jeffreys rule:

p(0]1) oc \/1(0)
10) = _E d*log Lp
e 2

e Favours parts of parameter space where data provides more information.
® |s invariant under reparametrisation.

e \Norks fine only in one dimension...

See more examples here: en.wikipedia.org/wiki/Jeffreys_prior


http://en.wikipedia.org/wiki/Jeffreys_prior

Data analysis
Sampling the posterior (MCMC)



Sampling from the posterior

p(0|D, Hi, ) oc Lo(H;) - p(0| Hi, 1)

 The posterior distribution is proportional to the likelihood times the prior.

 The normalising constant (called model evidence, marginal likelihood,
etc.) is of importance when comparing different models.

 The posterior contains all the information on a given model a Bayesian
statistician can get for a given set of priors and data.

* Posterior is only analytical in few cases:
 (Conjugate priors.

e (Other methods needed to sample from posterior.

Most Bayesian computations can be reduced to expectation values with
respect to the posterior.




0 : parameter vector
Hi: hypothesis
I: Information

Markov Chain Monte Carlo 5. data

p(0|D, H;, I) oc Lo(H;) - p(01H;, T)

Metropolis-Hastings

5 1. Lo, - p(Og|])
% 2. Create proposal point.
\jj 3. Lo - p(0|])

“.0) 45— Lorp(@1])

L:QO 'p(e_o | )



O : parameter vector
Hi: hypothesis

Markov Chain Monte Carlo ;. nformation

p(0|D, H;, I) oc Lo(H;) - p(01H;, T)

Metropolis-Hastings

1. Lo, - p(0o|])

% 2. Create proposal point.

\jl 3. Lo - p(0'|])
.0 4 — Lorp(01)
- ) | Logp(dol/)
o4 O

* 5. Accept proposal with
probability min(/, r)




0 : parameter vector
Hi: hypothesis

Markov Chain Monte Carlo ;. nformation

p(0|D, H;, I) oc Lo(H;) - p(01H;, T)

Metropolis-Hastings

1. Lo, - p(0o|])

2. Create proposal point.

3. Lo - p(0|])

Eef'p(e;’\ )
£90'p(90| )

4, T =

5. Accept proposal with
probability min(/, r)



0 : parameter vector
Hi: hypothesis

Markov Chain Monte Carlo ;. nformation

Metropolis-Hastings

0o Algorithms
* Metropolis-Hastings

N Gibbs sampling
04 <11 .
< . 1ce sampling
/(¢ 9) Codes
Hybrid Monte Carlo pymc
_ _QWQ\ emcee
0" o\

kombine
cobmcmc
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But beware. Non-
convergence,
bad mixing. The
dark side of
MCMC are they.

- %
;:-:.-, \ X
Problems fvith correlation
multi-nigdlal distributigns.

& )
’ .

“.
e



The problem with Correlations

If parameters exhibit correlations, then step size must be small to reach the
demanded fraction of accepted jumps.

—> Rejected proposal

Accepted proposal

Need a very long chain to explore the entire posterior. Or, more
relevant, the entire posterior will not be explored thoroughly (i.e.
reduced error bars!)



MCMC: the Good, the

Sad, and the Ugly

Visual inspection of traces.

Good

Marginal
MIXIiNg

| No convergence

Chain Step



Multi-modal posteriors.

Run as many chains as possible starting from
significantly different places in the prior space.

+1.238x10°

10
39
30 F
X 25
0 5
0o > -
I % 20
@ &
c .
o 15
e K
10
3t
5 f
2t :
0 - ! - ' 2 3 - 4 - SI % 200 1000 1500 2000 2500 3000
o 5000 10000 15000 20000 25000 3000C iterations

Chain step % 10

Be paranoid! You can always be missing modes.



Error model

Beyond the independent
normal paradigm



Error models

(Gaussian process regression



The Gaussian likelihood

1
In L = —5[ In(27) + In|K|4+r- K~ '-rT|

K: covariance of the data; n: number of data points; r = y - m: residuals vector

If K is diagonal (i.e. uncorrelated errors o))

1| " '
lnL:—§ nln(27r)—|—i§_:1ln0i2—l—x2 x x*

Alternatively, K can be generated by a kernel tunction k(x;, x;)
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Diagonal Kernel
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quared Exponential Kernel (A=1, tau=2)
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Diagonal Kernel

B Ly Ly by

quared Exponential Kernel (A=1, tau=2)
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Diagonal Kernel

3 — I I I
2| |
1} - O |
oL |
1l |
2L _
37 2 3 2 5
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Using GP regression for activity

Total model & data

Residuals

Time [days]

Haywood et al. (2014)



Using GP regression for activity

Alpha Cen B

-4.84

-600 =550 =500 -250 =200 -150 -100 100 150 200 450 500 550 600

HJD - 2455140

Rajpaul et al. (2015)



GP regression to correct K2 LC

EPIC 211748059: log,, F=5.30, kernel=QP, CDPP;=325, CDPP~=24
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Epilogue



Recap’ and conclusions

e Data is silent without a model. It can be treacherous with the
wrong one.

* "All models are wrong, but some are useful.”
* Physical models and error models are two faces of the same coin.

* As data precision improves, so must our ability to model and
analyse them (thank computers).

* There iIs no shame In using other people’s code, but there’s
nothing like writing (and debugging) your own.



Recap’ and conclusions

N
o

 The Bayesian approach is
becoming the industry
standard.

=
Ul

 Powerful and flexible way
of thinking about all things
around data.

% of Bayesian papers in astro-ph
o (=
n o

* “lf you're doing chi2
minimization, you could be
dOIﬂg Somethlﬂg better » 1995 2000 2005 2010 2015

Year

©
o



Recap’ and conclusions

e Stay tuned for:
e effects of stellar activity.
* planetary atmospheres.

e morel!
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A UNIQUE SOLUTION OF PLANET AND STAR PARAMETERS FROM AN EXTRASOLAR
PLANET TRANSIT LIGHT CURVE

S.SEAGER!? AND G. MALLEN-ORNELAS™
‘Received 2002 June 1 accepted 2002 Novenber 13

ABSTRACT

There is a unique solution of the planet and star parameters from a planet transit light curve with two or
more transits if the planet h orbit and the light curve is observed in a bandpass where limb dark-
ening is negligible. The existence of this unique solution is very useful for current planet transit surveys for
several reasons. First, there is an analytic solution that allows a quick parameter estimate, in particular of R,

econd, the stellar density can be uniquely derived from the transit light curve alone. The stellar density can
then be used to immediately rule out a giant star (and hence a much larger than planetary companion) and
can also be used to put an upper limit on the stellar and planet radius even considering slightly evolved stars.
Third, the presence of an additional fully blended star that contaminates an eclipsing system to mimic
planet transit can be largely ruled out from the transit light curve given a spectral type for the central star.
Fourth, the period can be estimated from a single-transit light curve and a measured spectral type. All of
these applications can be used o selct the bt planel transit candidates for mass determination by radial

velocity follow-up. To use th . the precision and time sampling of the
Tt curve must be high (beter than 0,005 mag prcclslon and 5 minute time sampling for a two-transit light
curve).

Subject headings: binaries: eclipsing — planetary systems — techniques: photometric

1. INTRODUCTION

Planet transit searches for close-in extrasolar giant planets (planets with orbital semimajor axes ~0.05 AU) promise to be
the next big step forward for extrasolar planet detection and characterization. Every transiting planet discovered will have a
measured radius. A radius is necessary to constrain the planet evolution and migration history and also provides constraints
on planet composition and atmosphere through evolutionary models. The importance of measured radii for a number of
close-in giant planets cannot be overstated. Recent theoretical studies (Guillot & Showman 2002) of planet evolution in close
proximity to a parent star are unable to match the radius from the preferred model with the measured radius of the transiting
planet HD 209458b to 20%-30%. This implies that there are atmospheric or interior physical processes taking place that are
not currently known. Many more planetary radii will be needed to help fully resolve this discrepan

In addition to radius, the absolute mass of transiting planets will be determined from combined transit and radial velocity
measurements. Note, however, that for the current state of theoretical models a precise radius measurement (as described
above) is more important than a precise mass. Minimum masses (from M sin i), or even just a census of approximate planetary
masses, are sufficient constraints for the current state of planetary formation and migration theories (with the exception of
studies of planetary dynamics of known extrasolar planet systems)

‘There are many other benefits of planet transit searches. Planets can be discovered around distant stars and in a variety of
environments. Because of their special geometry, many follow-up observations of transiting planets are possible, such as
atmosphere transmission spectroscopy (note the first extrasolar planet atmosphere detection by Charbonneau et al. 2002),
search for moons and rings (Brown et al. 2001), and detection of oblateness and the corresponding constraint on rotation rate
(Seager & Hui 2002). Note that the photometric signatures of moons, rings, planetary oblateness, and atmospheric refraction
are much smaller than the transit signature itself and so will have a negligible effect on basic parameters derived from a planet
transit light curve.

Although no planet candidates discovered by the transit method have yet been confirmed by mass measurements, many
scarches are currently ongoing. The OGLE-HT planet search (Udalski et al. 2002a, 2002b) has observed numerous high-
precision transit light curves from objects with small radii, including several potential planets. The EXPLORE search
(Mallén-Ornelas et al. 2003) has four potential planet candidates based on both photometric light curves and follow-up radial
velocity measurements (Yee et al. 2003; Mallén-Ornelas et al. 2002; G. Mallén-Ornelas et al. 2003, in preparation). The Vulcan
planet search (Borucki et al. 2001) has some published results on transit candidates that, with radial velocity measurements.
were determined to be eclipsing binary stars (Jenkins, Caldwell, & Borucki 2002).

! nstitae for Advanced Study, Einstcin Drive, Princeton, NJ 08540,
W address: Department of Terrestrial Magnelism, Carnegic Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 200157
scager@dim ciwedu
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Transits and Occultations

Joshua N. Winn
Massachusetts Institute of Technology

When we are fortunate enough to view an exoplanetary system nearly edge-on, the star and planet
periodically eclipse each other. Observations of eclipses—transits and occultations—provide a bonanza
of information that cannot be obtained from radial-velocity data alone, such as the relative dimensions
of the planet and its host star, as well as the orientation of the planet’s orbit relative to the sky plane and
relative to the stellar rotation axis. The wavelength-dependence of the eclipse signal gives clues about the
the temperature and composition of the planetary atmosphere. Anomalies in the timing or other properties
of the eclipses may betray the presence of additional planets or moons. Searching for eclipses is also a
productive means of discovering new planets. This chapter reviews the basic geometry and physics of
eclipses, and summarizes the knowledge that has been gained through eclipse observations, as well as the

information that might be gained in the future.

1. INTRODUCTION

From immemorial antiquity, men have dreamed of a
royal road to success—leading directly and easily 10 some
goal that could be reached otherwise only by long ap-
proaches and with weary toil. Times beyond number, this
dream has proved 10 be a delusion.... Nevertheless, there
are ways of approach 1o unknown territory which lead sur-
prisingly far, and repay their followers richly. There is
probably no better example of this than eclipses of heav-
enly bodies. — Henry Norris Russell (1948)

Vast expanses of scientifc territory have been traversed
by exploiting the occasions when one astronomical body
shadows another. The timing of the eclipses of Jupiter's
moons gave the first accurate measure of the speed of light.
Observing the passage of Venus across the disk of the Sun
provided a highly refined estimate of the astronomical unit.
Studying solar eclipses led to the discovery of helium, the
recognition that Earth’s rotation is slowing down due to
tides, and the confirmation of Einstein’s prediction for the
gravitational deflection of light. The analysis of eclipsing
binary stars —the subject Russell had in mind—enabled a
precise understanding of stellar structure and evolution.

Continuing in this tradition, eclipses are the “royal road”
of exop] ience. We can i ils about
exoplanets and their parent stars through observations of
their combined light, without the weary toil of spatially re-
solving the planet and the star (see Figure 1). This chapter
shows how eclipse observations are used to gain knowledge
of the planet’s orbit, mass, radius, temperature, and atmo-
spheric constituents, along with other details that are other-
wise hidden. This knowledge, in turn, gives clues about the
processes of planet formation and evolution and provides a
larger context for understanding the properties of the solar
system.

An eclipse is the obscuration of one celestial body by an-
other. When the bodies have very unequal sizes, the passage
of the smaller body in front of the larger body is a rransi

and the passage of the smaller body behind the larger body
is an occultation. Formally, transits are cases when the full
disk of the smaller body passes completely within that of
the larger body. and occultations refer to the complete con-
cealment of the smaller body. We will allow those terms to
include the grazing cases in which the bodies’ silhouettes
do not overlap completely. Please be aware that the exo-
planet literature often refers to occultations as secondary
eclipses (a more general term that does not connote an ex-
treme size ratio), or by the neologisms “secondary transit”
and “anti-transit.”

chapter is organized as follows. Section 2 de-
scribes the geometry of eclipses and provides the founda-
tional equations, building on the discussion of Keplerian or-
bits in the chapter by Murray and Correia. Readers seeking
amore elementary treatment involving only circular orbits
may prefer to start by reading Sackett (1999). Section 3 dis-
cusses many scientific applications of eclipse data, includ-
ing the determination of the mass and radius of the planet.
Section 4 s a primer on observing the apparent decline in
stellar brightness during eclipses (the photometric signal).
Section 5 reviews some recent scientific accomplishments,
and Section 6 offers some thoughts on future prospects.

2. ECLIPSE BASICS

2.1 Geometry of eclipses

Consider a planet of radius R, and mass A, orbiting a
star of radius R, and mass M.. The ratio /R, occurs
frequently enough to deserve its own symbol, for which we
will use k., in deference to the literature on eclipsing binary
stars. As in the chapter by Murray and Correia, we choose
a coordinate system centered on the star, with the sky in
the X-Y plane and the +Z axis pointing at the observer
(see Figure 2). Since the orientation of the line of nodes
relative to celestial north (or any other externally defined
axis) is usually unknown and of limited interest, we might

Winn (2010)
arxXiv:1001.2010
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Bayesian Logical
Data Analysis
for the Physical Sciences

A Comparative Approach with
Mathematica Support

Probability Theory

The Logic of Science
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Main references - Gaussian processes

Available online

http://www.gaussianprocess.org/gpml/

Carl Edward Rasmussen and Christopher K. |. Williams



Code

Bayesian evidence computation
github.com/exord/bayev

@ python’

GitHub

(Gaussian process regression

github.com/exord/gp
pypi.python.org/pypi/pygpr

Spot LC simulator
github.com/exord/lcspotter

pypli.python.org/pypi/lcspotter



