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Lecture I 
The growth of terrestrial planets 
and of the core of giant planets 



Lecture 1 overview
1. Protoplanetary disks 

2. From dust to planetesimals 

3. From planetesimals to protoplanets 

3.1 Focussing factor 

3.2 Growth rate 

3.3 Isolation mass 

3.4 Growth regimes 

3.5 Growth as a function of orbital distance 

4. Terrestrial planet formation
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Planet formation: The paradigm

Party  
line

A satisfactory theory should explain the formation of 
planets in the solar system as well as around other stars.

Minority 
line
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Sequential picture of planet formation



dust 
(μm)

planetesimals 
(∼km)

protoplanets 

Earth-sized 
(∼1000 km)

gas giants 
(∼10000 km)

105-107 
years

107-108 
years

dust sticking

Self. 
Gravity

runaway  
growth

oligarchic 
growth

runaway gas  
accretion late stages 

giant impacts

size

time
104-105 years

Challenges in planet formation

Difficulty:  
-huge dynamical rage in size/mass 
-100 million orbital timescales 
-lots of physics involved: gravity, 
hydrodynamics, radiation transfer, 
magnetic fields, EOS, … 
- non-linearities (runaway growth) 
-feedback mechanism (grav. scattering)
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1. Protoplanetary disks



Protoplanetary disk

-astrophysical accretion disks 
(angular momentum conservation) 
-size: several tens to hundreds of AUs 
-thin: aspect ratio H/r 0.01 to 0.1 
(H=vertical pressure scale height)

NGC 2024

Trapezium

IC 348

NGC 2362

introduced by theoretical evolutionary tracks, Figure 10 shows
that the ! Velorum cluster is in a similar evolutionary stage as the
other stellar groups with ages normally quoted as !5 Myr: the
k Orionis cluster (Barrado y Navascués et al. 2007; Dolan &
Mathieu 2002), the cluster NGC 2362 (Dahm & Hillenbrand
2007), and the Orion OB1b subassociation (Briceño et al. 2007;
Hernández et al. 2007b). We estimate an error of 1.5 Myr com-
paring the standard deviation in the color V " J for the member
sample (see x 3) to the standard deviation obtained using the
theoretical isochrones from Siess et al. (2000) with a reference
age of 5 Myr.

Figure 11 shows the disk frequencies of late-type stars (stars K
middle or later) with near-infrared disk emission in different stel-
lar groups, as a function of age (Hernández et al. 2005, 2007a;
Haisch et al. 2001). Using the number of members with V " J >
2:0 (!K5 or later) expected in our photometric sample (Fig. 3,
dashed histogram) and the disk detected in x 4.3, we calculated a
primordial disk frequency of 6% # 2%for the !Velorum cluster.
We include recent Spitzer results for the young stellar clusters
NGC 1333 (Gutermuth et al. 2008), NGC 2068/71(Flaherty &
Muzerolle 2008), Taurus (Hartmann et al. 2005), NGC 7129
(Gutermuth et al. 2004), Chameleons (Megeath et al. 2005),
Tr 37 and NGC 7160 (Sicilia-Aguilar et al. 2006), IC 348 (Lada
et al. 2006), NGC 2244 (Balog et al. 2007), NGC 2264 (Cieza
& Baliber 2007), " Ori (Hernández et al. 2007a), NGC 2362
(Dahm & Hillenbrand 2007), k Ori (Barrado y Navascués et al.
2007), Upper Scorpius (Carpenter et al. 2006), and Orion OB1b
and 25 Ori (Hernández et al. 2007b).

The disk frequencies decrease toward older ages with a time-
scale for primordial disk dissipation of !5 Myr. It is apparent
that the disk frequency found in the ! Velorum cluster is lower
than that found in young stellar populations with similar ages,
and comparable to the disk frequency in older stellar groups.

This could indicate that the low disk presence observed in the !
Velorum cluster is abnormal for its evolutionary stage, and envi-
ronmental effects, such as strong stellar winds and/or strong ra-
diation fields from the ! Velorum system, could provide the
physical mechanism for the low disk frequency.Moreover,!75%
of the disk-bearing stars in the ! Velorum cluster show IRAC
SED slopes smaller than the median values of other 5 Myr old
stellar groups plotted in Figure 10 suggesting that the disks of the
! Velorum cluster have a higher degree of dust settling. In par-
ticular, the median IRAC SED slopes for the disk population of
NGC 2362, the k Orionis cluster, the OB1b subassociation and
the ! Velorum cluster are "1.72, "1.60, "1.70, and "1.82, re-
spectively (with a typical error of 0.06).
Studying the young (2–3Myr) open cluster NGC 2244, Balog

et al. (2007) showed that high-mass stars (O-type stars) can affect
the primordial disks of lower mass members only if they are
within !0.5 pc of the high-mass star. We find similar results
for the ! Velorum cluster. Using the photometric members with
V " J > 3:5 (!M2 or later), we find a disk frequency of 4% #
3% at a projected distance of 0.25–1.0 pc; inside 0.25 pc the
central objects of the cluster contaminate the optical photometry
used to select photometric candidates (x 3). The closest primor-
dial disk is located at projected distance of !0.5 pc. At larger
projected distance (>1.0 pc), the disk frequency is larger (8% #
2%). This suggests that the relative fast dispersion of disks in the
! Velorum cluster is produced by the strong radiation fields and
strong stellar winds from the central objects. This result must still
be considered tentative given the small number of stars with
disks, which results in large errors in disk frequencies.
Alternatively, Figure 11 indicates that the disk frequency drops

rapidly at !5 Myr and the relative low frequency of disks ob-
served in the ! Velorum cluster could be explained if the cluster
is slightly older than 5 Myr. Additional studies of photometric
members presented in Table 1 are necessary to explain the disk
population found in ! Velorum cluster.

6. CONCLUSIONS

We have used the IRAC and MIPS instruments on board the
Spitzer Space Telescope to conduct a study of disks around the
! Velorum cluster. Since the central object is a binary system
consisting of the closest knownWolf-Rayet star and a high-mass
O star, a strong UVradiation field and stellar winds are present in
the cluster. Using optical photometry of X-ray sources (2XMM)
and members confirmed by spectroscopy (R. D. Jeffries et al.
2008, in preparation), 579 photometric candidates were selected
as possible members of the cluster. The level of contamination
by nonmembers depends on the V " J color range, showing the
highest level of contamination (!68%) at V " J ¼ 1:5–3.5,
where the field giant branch crosses the young stellar population.
Combining optical, 2MASS, and Spitzer data we have detected
infrared excess in 29 stars. One of the infrared excess stars is a
Be star.We report five debris disks aroundA-type stars, five debris
disks around solar-type stars (spectral type range F to early K)
and one solar-type star with infrared excess produced by a very
massive debris disks or by a primordial disk with a high degree
of dust settling. Seventeen disk-bearing low-mass stars (K5 or
later) were found in the cluster with a range of disk properties.
We classified these objects in three classes using the infrared ex-
cess at 5.8 #m and the SED slope ½8:0& " ½24&: nine Class II stars,
seven evolved disks star, and one pretransitional candidate. We
found that 76% of the stars bearing primordial disks have color
V " J > 4 (!later than M3.5), indicating a mass-dependent
timescale for disk dissipation in the ! Velorum cluster, similar

Fig. 11.—Fraction of stars with near-infrared disk emission as a function of
the age of the stellar group. Open circles represent the disk frequency for stars in
the T Tauri (TTS) mass range (!K5 or later), derived using JHKL observations:
NGC 2024 and Trapezium (Haisch et al. 2001), and Chameleon I (Gómez &
Kenyon 2001). Solid symbols represent the disk frequency calculated for stars
in the TTS mass range using Spitzer data (see text for references).

HERNÁNDEZ ET AL.1206 Vol. 686
Hernandez et al. 2008

HL Tau / ALMA



Rotation of solids and gas
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In the radial direction: equilibrium of gravity, pressure and centrifugal force
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-gas slightly pressure supported: rotates slightly slower than solids/planets

-the solids orbit in Keplerian rotation



Initial solid surface density profile

Simplistic assumption: fraction of material that condenses constant except 
for increase at the iceline

-Σ(r,t=0): gas surface density at t=0 (obviously ill defined)  
-fD/G is the dust to gas ratio fD/G (assumed that it is the same in disk and star) 
-Iceline: fR/I rock to ice ratio  
!

First solids in the disk: Condensation into micrometer sized dust.    
In reality inheritance in the outer disk…

Link of disk and stellar properties influencing planet formation process

1144 C. Mordasini et al.: Extrasolar planet population synthesis. I.

defined as the semimajor axis where the inner boundary of the
planet’s feeding zone touches the inner boundary of our com-
putational disk at amin = 0.1 AU, (“the feeding limit”) i.e. at
atouch = amin/(1−4(Mplanet/(3 M∗))1/3). If a planet has migrated
to atouch, all we can state is that its final semimajor axis would
be ≤atouch (it is also possible that it eventually would have fallen
into the host star), and what its mass at atouch was.

3. Monte Carlo method

The basic idea of using a Monte Carlo method to synthesize
planetary populations is to sample all possible combinations
of initial conditions (protoplanetary disk mass, metallicity, etc.)
with a realistic probability of occurrence. This leads to all pos-
sible final outcomes of the formation process (i.e. planets) also
occurring with their relative probabilities. We first explain the
general six step procedure that we used.

In the first step, we identified four crucial initial condi-
tions, and studied the domain of possible values they can take
(Sect. 3.1). Some other initial conditions had to be kept constant
during the synthesis of one population, for simplicity or compu-
tational time restrictions (Sect. 3.2). In the second step, we de-
rived probability distributions for each of the four Monte Carlo
variables (Sect. 4). In the third step, we draw in a Monte Carlo
fashion large numbers of sets of initial conditions. The forth step
consists of using the formation model for each set of initial con-
ditions, giving the temporal evolution of the planet (formation
tracks, Sect. 5.1) as well as its final properties (mass, semimajor
axis, composition etc., Sect. 5.2).

Many of these synthetic planets would remain undetected by
current observational techniques. So, to be able to compare the
synthetic planet population with the observed one, we apply in
the fifth step a detailed synthetic detection bias (Paper II). In
this way, we obtain the sub-population of observable synthetic
planets. Ultimately, in the sixth step, we performed quantitative
statistical tests (Paper II) to compare the properties of this ob-
servable synthetic exoplanet sub-population with a comparison
sample of real extrasolar planets.

3.1. Monte Carlo variables

We use four Monte Carlo variables to describe the varying initial
conditions for the planetary formation process. Three describe
the protoplanetary disk and one the seed embryo.

1. The dust-to-gas ratio in the protoplanetary disk fD/G de-
termines (together with Σ0) the solid surface density.
Models with fD/G between 0.013 and 0.13 were computed.
Combined with the domain of Σ0, this corresponds to ini-
tial solid surface densities at a0 = 5.2 AU of between 0.65
and 130 g/cm2. For comparison, the MMSN has a value of
approximately 2.5 g/cm2 (Hayashi 1981).

2. The initial gas surface density Σ0 at 5.2 AU gives the amount
of gas available. Values between between 50 and 1000 g/cm2

were used. The MMSN is estimated to have had a value of
about 100−200 g/cm2 (Hayashi 1981).

3. The last variable that characterizes a disk is the rate at which
it loses mass due to photoevaporation Ṁw. For the popula-
tion presented below, it was allowed to vary between 5 ×
10−10 M⊙/yr and 3 × 10−8 M⊙/yr.

4. The initial semimajor axis of the seed embryo within the
disk, astart, is the fourth variable. It can take values of 0.1 ≤
astart ≤ 20 AU.

3.2. Parameters

Some other initial conditions of the model were kept constant
for all planets of a given population. We mention only the most
important parameters here. More details can be found in Alibert
et al. (2005a). For the nominal population discussed in Sect. 5,
we use a viscosity parameter α for the disk model of 0.007 and
an efficiency factor for type I migration fI of 0.001. The influ-
ence of these two important parameters is briefly discussed in
Sect. 5.3.3, and will be further considered in forthcoming publi-
cations. In this and the companion paper the mass of the central
star M∗ is kept constant at 1 M⊙.

4. Probability distributions

In the next step we determine the probability of occurrence of
a certain combination of initial conditions. In the ideal case, the
probability distributions for all our variables would be derived
directly from observations. Unfortunately, in reality, this is not
possible either because in some cases observations do not exist
or, even if they exist, a certain amount of modeling is necessary
to extract the distributions from the observations.

4.1. Dust to gas ratio fD/G – [Fe/H]

To establish a link between the dust-to-gas ratio fD/G, which is
the computational variable required by our model, and the corre-
sponding observable, the stellar metallicity [Fe/H], we assume:
(1) the stellar content in heavy elements is a good measure of the
overall abundance of heavy elements in the disk during forma-
tion time. Support for this assumption comes from the small dif-
ferences between solar photospheric and meteoritic abundances
(Asplund et al. 2005); (2) a scaled solar composition and (3) a
negligibly small influence of the change of the relative heavy
element content on the relative hydrogen content in the compar-
atively small [Fe/H] domain of interest for planet formation in
the solar neighborhood (−0.5 ≤ [Fe/H] ≤ 0.5). Then, similar to
Murray et al. (2001), we can write

fD/G
fD/G,⊙

= 10[Fe/H] (6)

where fD/G,⊙ is the dust to gas ratio corresponding to [Fe/H] = 0.
This formula implies that we assume that iron is a good tracer
of the relevant overall amount of solids available for planet for-
mation. Robinson et al. (2006) have found that at a given iron
abundance, planet host stars are enriched in silicon and nickel
over stars without planets, indicating that the above relation is a
simplification.

Measurements of the heavy element abundance in the Sun
yield the amount (for complete condensation) of high Z material
that existed initially in the form of uniformly mixed fine dust
grains. However, what is relevant for our simulations is the con-
centration of solids in the innermost 20 AU of the disk at a later
stage, namely when the dust has evolved into the 100 km plan-
etesimals used in our model.

As has been shown by Kornet et al. (2001), the transition
from the very early dust phase to the later planetesimal phase in-
volves a number of coupled mechanisms of dust-dust and dust-
gas interactions like dust settling to the midplane, dust growth
by coagulation and radial drift. This leads to a redistribution of
the solids within the disk, which can in turn have important ef-
fects on planetary formation (Kornet et al. 2005). The key point
is that these processes lead to an increase of the solid to gas ra-
tio in the inner (<∼10−20 AU) planet forming regions of the disk

Relate it to stellar metallicity [Fe/H]: 



Initial solid surface density profile

Inside (hot, T>~180 K): rocks only (silicates and metal) 
!
Jump at “iceline”: Disk temperature small enough for ice to condense. 
!
Outside(cold): ice and rocks

5 x Minimum mass 
solar nebula

– 5 –

where BL is the width of the feeding zone in Hill spheres, Mp the planet mass, ap its orbital

semi-major axis, and Ṁc the planet solid core accretion rate. Other e↵ects that could modify

the surface density of planetesimals, like drift, are neglected. Figure 2 shows the initial solid

surface density for a 5 times MMSN disk (black line) and how a protoplanet growing in situ

at about 7 AU “eats” into the disk by accreting planetesimals.
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Fig. 2.— Solid surface density as a function of semi-major axis and time. The black line is

the initial condition (nearly) while the red lines are later moments in time. The inner radius

is 0.03 AU, the outer 30 AU.

The full width of the feeding zone is taken to be 12 Hill sphere radii where the Hill

sphere radius is

RH =

✓
Mp

3M?

◆1/3

ap (9)

with total mass of the planet Mp as the sum of Mc the mass of the core and Me the mass of

the H/He envelope.

3. Accretion of planetesimals

The growth of the solid core with massMc is assumed to occur in the classical picture via

the accretion of small background planetesimals. We use the same equation as Ida and Lin

(2004), describing the accretion rate in the oligarchic growth regime. The random velocities

of the planetesimals are raised by viscous stirring by the protoplanet, while they are damped
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 2. From dust to planetesimals



Early phasesSedimentation

Dust grains coagulate and gradually decouple from the gas

Sediment to form a thin mid-plane layer in the disc

Planetesimals form by continued coagulation or self-gravity (or
combination) in dense mid-plane layer

HOWEVER:
MRI-driven turbulence very e⇥cient at di�using dust

Anders Johansen (Lund) Dust growth 21 / 36

!
The basic picture of the early stage of planet formation 
(growth from dust to km sized planetesimals) is the following:

A. Johansen

•The dust grains settle into a thin mid-plane layer in the disk (no vertical 
pressure gradient for solids). 

•Planetesimals (~km sized) form by continued coagulation (two body 
collisions) or a self-gravitational instability of the dust (or a combination of 
the two) in the dense mid-plane layer. 

•Dust grains condense, coagulate and gradually decouple from the 
gas. Gas drag is very important. 



- solids and gas do not orbit the star at the same speed

➝ gas drag & turbulence determines the collision velocities

So called “meter-barrier” for classical coagulation. Double trouble: 
-Drift barrier (drift timescale only 100 yr for 1 m body at 1 AU!) 
-Fragmentation barrier (typical relative velocities for 1 m bodies 
lead to destructive collisions)

?
μm mm m km

x 1000 x 1000 x 1000
surface effects strength regime gravity regime

maximum relative velocities

➝ gas drag causes dust to drift towards the star 

Dust to planetesimals
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Fig. 7. The particle size distribution at different radii in
the disk at different times of disk evolution as discussed
in Sec. 3.2.1. In this simulation all particle gowth mecha-
nisms are included as well as the radial motion of the dust.
The fragmentation of particles is neglected. The left and
the right plots always belong together. The left column
shows the surface density as a function of particle radius
at 1, 10 and 100 AU. The right column shows the corre-
sponding contour plots of the surface density as a function
of disk radius and particle radius. The white lines in the
contour plots denotes the particle radius for which the
Stokes number is unity (i.e. largest radial drift and largest
radial velocities).

α-parameters instead of different disk masses. The initial
dust-to-gas ratio in this simulation is 10−2, the disk mass
is 10−2 M⋆ and the result is shown in Fig. 9.

One would intuitively think that in a certain time par-
ticles can grow to larger sizes in highly turbulent disks
than in low-turbulent disks. Fig. 9 shows, however, that
the dominant particle size after 104 yrs is only weakly de-
pendent on the turbulence parameter α. If α changes by
two orders of magnitude then the dominant particle size
only changes by a factor of two. This can be understood
by the following consideration.

A high amount of turbulence in the disk leads to high
relative turbulent particle velocities (Völk et al. 1980;
Weidenschilling 1984; Cuzzi et al. 2001). These high rela-

Fig. 8. The effect of disk mass on the particle growth as
discussed in Sec. 3.2.2. Shown is the dominant dust par-
ticles radius after 104 yrs of disk evolution for different
disk masses between 0.2 and 10 AU. The turbulent α pa-
rameter is 10−3 and the initial dust-to-gas ratio is 10−2.

Fig. 9. Same plot as Fig. 8 but now showing the ef-
fect of turbulence on the particle growth as discussed in
Sec. 3.2.3. Shown is the dominant particles size after 104

yrs of disk evolution for different turbulent α parameters
between 0.2 and 10 AU. The disk mass is 10−2 M⋆ and
the initial dust-to-gas ratio is 10−2.

tive velocities cause high collision rates, cf. Eq. (24), which
favour the process of coagulation. For this reason parti-
cles should have grown to larger sizes in highly turbulent
disks. On the other hand, a large amount of turbulence
leads to thick particle layers. The dust is stirred up in the
higher regions of the disk which causes the average dust
densities to decrease. The collision rates in Eq. (24) are
proportional to the particle number densities. Lower dust
particle densities lead to longer coagulation time scales.

No fragmentation

fdg=1% Brauer, Dullemond and Henning: Coagulation and fragmentation of grains 13

Fig. 11. This plot shows the results of a simulation in
which the particles can break through the radial drift bar-
rier as discussed in Sec. 3.2.4. Particle fragmentation is
neglected in this simulation. Shown is the surface density
distribution for the first 104 yrs of disk evolution for an
initial dust-to-gas ratio of 0.03 as a function of disk radius
and particle radius. The disk mass is 10−2 M⋆ and the
turbulent α parameter is 10−3. The right side is a contour
plot of the surface density. The left side shows the abso-
lute values of the surface density for 3 different disk radii
(solid - 0.3 AU, dotted - 1 AU, dashed - 3 AU).

also indicates that the disk temperature and intrinsic par-
ticle properties like solid density are rather unimportant as
long as the Stokes number of the particles is smaller than
unity and turbulence is the leading process that triggers
coagulation.

However, Ormel et al. (2007) have shown that the
porosity of dust particles actually matters in the early
phases of disk evolution. This discrepancy is due to
the fact that the Eq. (39) only holds if St > α while
Ormel et al. (2007) considered particles with St < α.
Moreover, Brownian motion is the main source for rela-
tive particle velocities for small dust grains in the early
disk evolution while the derivation of Eq. (39) assumes
that turbulence is the major source for relative particle
velocities.

3.2.5. The radial drift barrier

Now we will estimate in which regions of the disk and
under which conditions the solid particles can theoretically
overcome the radial drift barrier.

In section 3.2.4 we have seen that particle coagulation
due to turbulence in the disk can be described by ȧ =
aΩkϵ0. We define a particle growth time scale τg by

τg = γ
a

ȧ
=

γ

Ωkϵ0
. (40)

The parameter γ measures how much the solid particle
has to grow to cross the particle size region of fast radial
drift, i.e. to overcome the radial drift barrier. We assume
this parameter to have a certain value determined by the
disk model and to be a constant throughout the disk. The
largest radial drift velocity in the disk is approximately
given by c2

s/Vk. We define a radial drift time scale τd by

τd =
r

c2
s/Vk

. (41)

The ratio between these two time scales is given by

τg

τd
=

γ

ϵ0

(

H

r

)2

. (42)

In the last step we made use of Eq. (15). Now, the particles
may overcome the radial drift barrier if the ratio τg/τd is
smaller than unity, i.e. if the growth time scales are smaller
than the radial drift time scales. The parameter γ is still
indefinite.

To specify this parameter we consider Fig. 10 in
Section 3.2.4. These simulation results show for which ini-
tial dust-to-gas ratio ϵ0 the particles break through the
meter size barrier at a certain radius in the disk. We chose
the parameter γ in a way that the condition τd > τg is in
agreement with the results shown in this figure. This leads
to γ ≈ 12. With this value, the particles should overcome
the radial drift barrier if the inequality

ϵ0 ! 12

(

H

r

)2

(43)

holds.
The particles, which break through the radial drift bar-

rier in Fig. 10, have already drifted inwards. For this rea-
son, the critical value given by Eq. 43 indicates the initial
dust-to-gas ratio for which the particles most likely break
through the radial drift barrier. The sufficient ϵ0-value to
overcome the radial drift barrier is presumably even lower
than this value.

3.2.6. Dust mass loss in the disk

When particles drift into the evaporation zone, they are
lost for the process of planetesimal formation. Hence, the
question of how much solid material is actually lost due to
its drift into the inner regions is of essential importance.
We calculate the mass which is present in small (St < 1)

fdg=3%

With fragmentation

Brauer, Dullemond and Henning: Coagulation and fragmentation of grains 15

Fig. 13. As Fig. 7, but now also the fragmentation of
particles is included in the simulations as discusssed in
Sec. 3.3.1. The left column shows the surface density as a
function of particle radius at 1, 10 and 100 AU. The right
column shows the corresponding contour plots of the sur-
face density as a function of disk radius and particle size.

Fig. 13 indicates that the maximum dominant particle
size amax and the Stokes number St have the same radial
behaviour. This is due to the fact that relative particle ve-
locities in our model (except Brownian motion) scale with
this dimensionless number. For this reason, the dominant
particle size follows amax ∝ r−0.8 which we obtain directly
from the definition given by Eq. (13).

Due to destructive collisions a large amount of dust is
present in small grains as can be clearly seen in Fig. 13.
We calculate the amount of dust which is present in grains
larger (smaller) than 10−2 cm after 105 yrs of disk evo-
lution. While 18% of the dust mass is present in grains
larger than 10−2 cm, yet 82% of the mass is present in
smaller grains. This large population of sub-mm grains
should have a strong effect on the spectrum of the proto-
stellar disk. However, we will not investigate the influence
of the fragmentation parameters, i.e. vf and ξ, on the disk
spectrum which goes beyond the scope of this paper. This
will be investigated in the near future.

Fig. 14. The influence of the turbulence parameter α on
the dominant particle size after 104 yrs of disk evolution
for different disk radii between 1 and 20 AU as discussed in
Sec. 3.3.2. The disk mass is 10−2 M⋆, the fragmentation
velocity is 103 cm/s and the initial dust-to-gas ratio is
10−2. This graph also shows the particle size for which
the Stokes number ist unity. The χ parameter is set to 0.5
and ψ = 1.

3.3.2. Effect of turbulence

Different turbulent α-values should lead to different max-
imum particle sizes due to destructive collisions. To in-
vestigate the influence of turbulence on the fragmentation
barrier, we calculate the dominant particle size for differ-
ent α-values after 104 yrs of disk evolution. In this simula-
tion the disk mass is 10−2 M⋆, the fragmentation velocity
is 103 cm/s, the initial dust-to-gas ratio is 10−2 and the
results of the calculation are shown in Fig. 14.

According to this plot, the dominant particle size is
fairly dependent on α in moderately turbulent disks. If α
is changed from 10−3 to 10−4 then the dominant particle
size adom changes by a factor of ∼ 5. We find that less
turbulence shifts the fragmentation barrier towards larger
particle sizes. Hence, in less turbulent disks particles can
grow to larger sizes than in highly turbulent disks.

However, this statement does not hold for extremely
low turbulent disks. In these disks, turbulence is not the
main source for relative velocities and, hence, the frag-
mentation barrier should not be dependent on α. If α is
smaller than ∼ (cs/2Vk)2 (cf. Eqs. 18 and 35) which is
∼ 10−4 at 1 AU then relative particle velocities due to ra-
dial motion exceed relative dust particle motions induced
by turbulence. To illustrate this independency we calcu-
late the dominant particle size after 104 yrs for a disk
with a very low α-value of 10−10. The result of this cal-
culation is also shown in Fig. 14. In this nearly laminar
disk, destructive collsions due to relative drift velocities up
to 50 m/s prevent particle growth to sizes of more than
∼ 2 mm at 1 AU.

fdg=1%, vf=10m/s
18 Brauer, Dullemond and Henning: Coagulation and fragmentation of grains

Fig. 18. These plots show how the particles break through
the radial drift barrier and the fragmentation barrier as
discussed in Sec. 3.3.3. Shown are contour plots of the
surface density as a function of disk radius and particle
radius at 4 different times of disk evolution. The fragmen-
tation velocity is chosen to have the relatively high value
of 30 m/s. In this simulation ψ = 2 and χ = 0. The initial
dust-to-gas ratio is 0.03.

sweep up smaller dust particles drifting inward from the
outer regions. For this reason, most of the solid material
after 1 Myrs has drifted into the evaporation zone and is
lost for the process of planetesimal formation.

3.3.5. Effect of disk model

In the introduction we mentioned that the disk model
adopted in this paper differs significantly from the MMSN
model. This leads to the question of how the results of this
paper change if different disk models are considered. In
this section, we repeat simulations of Sec. 3.3 with other
disk model parameters, attempting to unveil the basic
changes in the dust particle distribution. Table 1 shows
the disk parameters for the simulations in this section.
Model A and B are the MMSN model and the disk model
in this paper, respectively. Model C is our model, but now
with 10% disk mass instead of 1% compared to M⋆. This
leads to gas densities which are comparable to those of

Fig. 19. The mass of the dust disk between 1 AU and
150 AU as a function of time for 3 different initial dust-
to-gas ratios as discussed in Sec. 3.3.4. In this simulation,
particle growth particle fragmentation and radial motion
are included. The initial disk mass of gas and solid mate-
rial is 10−2 M⋆, α = 10−4, χ = 0.5, ψ = 2 and vf = 10 m/s.

Model Surface density Disk Temperature
power law index δ mass power law index β

A 1.5 0.01 0.50
B 0.8 0.01 0.50
C 0.8 0.10 0.50
D 1.5 0.01 0.62
E 0.8 0.01 0.62
F 0.8 0.10 0.62

Table 1. Disk parameters for the simulations performed
in Sec. 3.3.5. The quantity β denotes the temperature
power law index T ∝ r−β . The Models A and B corre-
spond to the MMSN model and the model adopted in this
paper, respectively. Model C is as the model in this pa-
per but now with 10% disk mass. The Model D to F are
as A to C but with a slighly steeper radial temperature
dependency.

the MMSN model. The mass distribution, however, has
a much flatter radial dependency. The models D to F are
the same as A to C, but with a steeper radial temperature
dependency. Andrews & Williams (2007) observationally
find radial temperature profiles with a median power law
index of 0.62. This is slighly higher than the passively ir-
radiated disk profile of 0.5 adopted in our model.

Before we come to the results of the simulations,
we will qualitatively discuss the difference between the
MMSN model and the model in the paper at hand. The
gas mass densities of our model are generally smaller than
those of the MMSN model. This has the following main
implications. First, solid particles are less coupled to the
motions of the gas. The coupling between the gas and the

fdg=3%, vf=30m/s

Brauer et  
al. 2008



Dust settles into the midplane into a 
thin sheet: for sufficiently high dust 
concentration: unstable to a self-
gravity. (Goldreich & Ward 1973)	

The turbulent speed of grains 
must however be low to reach 
the necessary concentration. 

Alternative: Goldreich-Ward mechanism



Alternative: Goldreich-Ward mechanism

Preliminary conclusion: Turbulence prevents self gravitational formation
Fig. 11. The onset of the Kelvin-Helmholtz instability for cm-sized pebbles with
Ω0τf = 0.02. The initial Gaussian particle distribution falls towards the mid-plane of
the disk on the characteristic time-scale of tgrav = 1/(Ω2

0τf) ≈ 50Ω−1
0 . The increased

vertical shear in the gas rotation velocity eventually makes the disk unstable to the
KHI, forming waves that finally break as the turbulence goes into its non-linear
state.

The disk temperature and density decrease with the distance from the central
object and thus there is a global pressure gradient in the disk pointing radially
outward. This radial pressure gradient supports the disk against gravity from
the central object and the centrifugal force is reduced to a sub-Keplerian
rotation rate by a few permille.

Even this small sub-Keplerian rotation can lead to a dramatic ”rain out” of
a certain size particles radially into the central star because they will move
up the pressure gradient. The critical size is reached when the particle growth
time via sweeping up smaller dust grains becomes larger than the radial drift
time (See Fig. 12).

In the case of no external forces the effect of turbulent concentration would
be simple: Centrifugal forces would expel particles from turbulent eddies and
concentrate them in convergence zones between the vortices (See Fig. 13). In

13

Vertical shear between keplerian dust disk and subkeplerian gas 
above causes KH instabilities: stir up dust: no collapse possible. 

Klahr al. 2008

Kelvin-Helmholtz instability



Dust trapped locally in transient gas vortices in a turbulent disk or 
concentrated by the streaming instability can eventually become 
gravitationally bound.

New picture:Gravoturbulent planetesimal formation

Turbulence aided growth might proceed 
from pebbles directly to intermediate-
sized (100-1000 km) objects.
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Fig. 18. Plot of dust-to-gas ratio in bins of the local vortex parameter
Ψ ≡ [−(u · ∇)u] · f(u) for the turbulent flow. Anticyclonic vortices have a nega-
tive value of Ψ , whereas for cyclonic vortices Ψ is positive. For the intermediate
friction time run (see right panel:1cm sized particles with Ωτf ≈ 10−2), there is
a clear anticorrelation between vortex parameter and dust-to-gas ratio. This is an
indication that dust is being trapped in anticyclonic vortices which are features of
the turbulent accretion disk flow. Particles in the left panel are too small to get
concentrated (size is 0.1 µm). Taken from Johansen & Klahr 2005.
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Fig. 19. The maximum number of particles in a single grid cell as a function of
time for a run with meter-sized boulders, e.g. a Stokes number Ωτf of about unity.
The maximum density is generally around 20 times the average, but peaks at above
80 times the average particle density. The insert shows a magnification of the time
between 50 and 51 orbits. Taken from Johansen, Klahr & Henning 2006.

and it is difficult to produce a population of boulders above this meter-size
regime 3 . So the first defining property of planetesimals is that they move

3 It is convenient to use the term meter-barrier, because for a distance of 5AU from
the central object in a typical solar nebula the fastest drifting objects are of this
dimension. Yet as the drift velocity depends on the gas density, temperature and
local orbital period the fastest drifting objects will be smaller at greater distance

20

Johansen et al. 2006

Klahr & Johansen 2008
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Fig. 25. Mass accretion onto a gravitationally bound cluster at three different nu-
merical resolutions. The plots show the maximum bulk density of solids as a function
of time, normalized by the average gas density. Drag force and vertical gravity are
turned on at t = −10, while self-gravity and collisional cooling are turned on at
t = 0. The density increases monotonically after the onset of self-gravity because
gravitationally bound clusters of boulders form in the mid-plane. After only seven
orbits peak densities in these clusters approach 104ρg or a million times the average
boulder density in the disc. The colored bars show the mass contained within the
most massive Hill sphere in the box, in units of the mass of the 970 km radius
dwarf planet Ceres (MCeres = 9.5× 1023 g). The most massive cluster in the highest
resolution case accretes about 0.5MCeres per orbit (the entire box contains a total
boulder mass of 50MCeres). The cluster consists of approximately equal fractions
of the three larger boulder sizes. The smallest size, with ΩKτf = 0.25, is initially
underrepresented with a fraction of only 15% because of the stronger aerodynamic
coupling of those particles to the gas, but the fraction of small particles increases
with time as the cluster grows massive enough to attract smaller particles as well.
The mean free path inside the bound clusters is shorter than the size of the clus-
ter, so any fragments formed in catastrophic collisions between the boulders will be
swept up by the remaining boulders before being able to escape the cluster.

be an understanding of how dust grows to meter-sized boulders in a turbulent
disk, using 3D-simulations that do not oversimplify the relevant physics. Only
if we have the proper initial conditions of the boulder size distribution and in
addition know the proper turbulent state of protoplanetary disks, will it be
possible to put a solution to the planetesimal formation problem.

8 The core accretion - gas capture model

Once there is a sufficient population of planetesimals, e.g. the majority of
dust was converted into more than kilometer sized objects, a period of oli-
garchic growth starts (Thommes et al., 2006). In this period the motion of the
planetesimals is decoupled from the gas and strictly determined by the gravita-
tional N-body interactions between the planetesimals. As a result of the grav-
itational interaction during close approaches the planetesimals increase their
effective cross section for collisions (gravitational focusing: Safronov (1969)).
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3. From planetesimals to protoplanets



Growth from ~km to protoplanets (~1000 km)
Growth in this size range: 
•via two body collision (collisional growth).  
•Compared to the earlier stages, gravity is now dominant 
•But gas drag still plays a role  

!
• Huge number of planetesimals to follow (no direct integration of 

Newtons law of gravity): 10 MEarth > 108 rocky bodies with R=30 km 

Still, the growth from ~km sizes planetesimals to ~1000 km sized 
protoplanets is still difficult to understand: 

• Initial conditions poorly known: how do the first planetesimals form?

• Non-trivial impact physics: shock waves, multi-phase fluid, fracturing

!
• Highly non-linear with complex feed-back mechanisms 

- growing bodies play an increasing role in the dynamics



!

Background: Hill sphere 

Equipotential surface

RH

the Hills radius is given by: 

RH ⇡ a
⇣ m

3M

⌘1/3

it is a measure of the gravitational 
reach of the planet

can easily be obtained by 
considering the orbital frequencies
✓
Gm

R3
H

◆1/2

'
✓
GM

a3

◆1/2

' ⌦

Examples: RH = 0.014AU

RH = 0.51AU

RH = 1.12AU

a = 1AUEarth:

Jupiter: a = 5.2AU

m = 6⇥ 1024kg

m = 1.9⇥ 1027kg

Neptune: m = 1.03⇥ 1026kga = 30.14AU

•Idealized system: Star - Planet on circular orbit - massless planetesimal 
•Energy & momentum conservation: separate (in the rotating coordinate 
system) regions which are accessible to the massless particle (Jacobi integral).  

Important consequence: 
!
Hill sphere: region where planet 
gravity dominant over stellar gravity. 
Between the Lagrangian points L1 
and L2.  
!
It is a measure of the gravitational 
reach of a planet.



Equipotential surface

RH

the Hills radius is given by: 

RH ⇡ a
⇣ m

3M

⌘1/3

it is a measure of the gravitational 
reach of the planet

can easily be obtained by 
considering the orbital frequencies
✓
Gm

R3
H

◆1/2

'
✓
GM

a3

◆1/2

' ⌦

Examples: RH = 0.014AU

RH = 0.51AU

RH = 1.12AU

a = 1AUEarth:

Jupiter: a = 5.2AU

m = 6⇥ 1024kg

m = 1.9⇥ 1027kg

Neptune: m = 1.03⇥ 1026kga = 30.14AU

Estimate: equate orbital frequency of an orbit around the planet with orbital 
frequency of an orbit around the star:

Equipotential surface

RH

the Hills radius is given by: 

RH ⇡ a
⇣ m

3M

⌘1/3

it is a measure of the gravitational 
reach of the planet

can easily be obtained by 
considering the orbital frequencies
✓
Gm

R3
H

◆1/2

'
✓
GM

a3

◆1/2

' ⌦

Examples: RH = 0.014AU

RH = 0.51AU

RH = 1.12AU

a = 1AUEarth:

Jupiter: a = 5.2AU

m = 6⇥ 1024kg

m = 1.9⇥ 1027kg

Neptune: m = 1.03⇥ 1026kga = 30.14AU

This leads to a similar result 
as the exact derivation:

The width of the feeding zone of 
a planet: a few times R_H

!

Background: Hill sphere 



3.1 Focussing factor



Gravitational focussing: 2 body
Billiard game: collisional cross section=geometrical cross section 

Gravity: increase of the collisional cross section over the geometrical one 
(gravitational focussing).Collision cross-section: 2 body 
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Gravitational focussing: 2 body
Combining gives

Collision cross-section: 2 body 
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with the escape velocity given as

This means that the collisional cross-section σ is given as:

⇥ = �r2 = �(r1 + r2)2
⇤

1 +
�

vesc

v�

⇥2
⌅

geometrical  
cross-section

gravitational 
focusing factor Fg

Focussing factor: proportional to square of the escape to random velocity.  
Random velocity: excess over the velocity on a circular orbit. 
!
In honor of V. Safronov, a Russian scientist who was the first to 
develop this collisional accretion scenario, one often uses the so 
called Safronov number 



3.2 Growth rate



Mass growth rate

dmp

dt
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Growth rate

vdt

Mass gain during dt
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Growth rate

dM = � ⇥ v dt

using and Growth rate:

isotropic velocity distribution: 

(Lissauer 1993)

M

Notes: 
- the velocity dispersion of planetesimals enters only in focusing factor
- the growth rate is larger in disks with larger planetesimal surface densities
- since          generally decrease with distance, planets grow slower at large
   distances
-       can be much more complex in the three-body approximation

� =
�p

2Hp

Hp

a
=

v

vK
=

va

�

!
Growth rate: cylinder swept per time

Using and estimating planetesimal vertical scale height as

we have

For an isotropic velocity distribution one finally finds:

Scenario: one big body accreting from small background planetesimals.



Mass growth rate II

Notes:  
•the velocity dispersion (random velocities) of planetesimals is the key factor. 
•the growth rate is larger in disks with larger planetesimal surface densities.  
•  	    generally decrease with distance: planets grow slower at large distance    

Protoplanet growth=>decrease of surface 
density of planetesimals. For accretion 
from a feeding zone with spatially constant 
planetesimal surface density for a planet 
with semimajor axis a

The core accretion model : phase 1

Accretion of planetesimals

Formation of a core

Accretion rate of gas very low

Depletion of the feeding zone

MZ < critical mass

Frejus - 30 November 2004

Decrease of planetesimal surface density



3.3 Isolation mass



Isolation mass
Embryo grows by accreting planetesimals: empties it surroundings.  
At the same time extends its gravitational reach (Hill radius): new 
planetesimals available to accrete.

Since the mass of reachable planetesimals grows slower than linearly, the 
growing embryo will eventually become starved of planetesimals and reach 
a maximum mass, the so-called isolation mass.

We obtain the value by solving

The mass of the embryo accreting from an annulus is approximately

�a =

The width of the annulus is given by the feeding zone



Isolation mass II
This yields

It is interesting to evaluate the value of Miso at different location. For this we 
specify the surface density: 

with �ice =

⇢
1 if a < aice
4 if a � aice

aice is the position of 
the ice line

Conclusions:
- embryos must coalesce in order to 
  form terrestrial planets in the inner
  solar system
- difficult to form bodies of 10 Earth
  mass in the Jupiter region unless the
  planetesimal surface density is at 
  least about 3 times higher...�0

= 7g/
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rth

Ju
pi

te
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� = �3/2, aice = 3AU, C = 4and we assume the following values: 

�p(a) = �ice�0

⇣ a

1AU

⌘�
g/cm2

For Σ falling slower than a-2 : Miso increase  with distance.

!
•For MMSN: Miso ≅ 0.05 Mearth  at 1 AU	 	
	                Miso ≅1.4 Mearth at 5.2 AU 

!
•Embryos must coalesce beyond Miso to form 

terrestrial planets in inner solar system  !
•Difficult to form bodies of 10 Earth mass in 

the Jupiter region unless Σ > 3 MMSN. !
•Miso maximal for in situ accretion on a circular 

orbit.  
•Orbital migration changes the game 
•Dust/Pebble/Planetesimal drift also. 
•Eccentricity too. But must excite...



3.4 Growth regimes



•First stage of collisional growth of planetesimals to protoplanets 
Runaway growth 

0)spontaneous formation of one body (slightly) more massive than the other !
1)equipartition of energy: e and i of the big body small. !
2)e and i of small bodies (in the early stage) not affected/increased. !
3)the relative velocity between the big and the small body becomes small. !
4)at the same time, vesc of the big body increase due to its increase in mass. !
5)Fg of the big body thus becomes 

6)the runaway body grows faster than the planetesimals, consuming all 
planetesimals in the feeding zone (in principle). It decouples from the 
mass distribution of the small ones.  
! A clearly a strongly nonlinear process.

Runaway growth mechanism

   The small bodies have in comparison a much smaller Fg. 



Runaway growth II
For the focussing factor we have:

Limiting cases
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For the mass accretion rate this means

or in relative terms

The bigger the body, the faster it grows!
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As a result, more massive bodies grow more slowly than the less 
massive ones (similar to orderly growth, cf below), but protoplanets 
still grow faster than planetesimals in their surroundings (similar to 
runaway growth).

Oligarchic growth
•Second stage of collisional growth of planetesimals to protoplanets  
!
When bodies have grown to a certain mass (~0.01 Mearth), growth mode 
changes to oligarchic. Big bodies are now called oligarchs.

Initially, planetesimal disk not affected by the presence of the bigger 
protoplanets: runaway. Later however,  

•runaway bodies become the main scatterer.  
•It “heats” up (increases) the random velocities of the small bodies.  

!
Clearly, reduces the gravitational focussing factor



In the oligarchic regime, the growth of the velocity dispersion is 
dominated by the big body, and focusing is strong.

Oligarchic growth IIReal case
1 < Fg < few 103 oligarchic growth regime Ida & Makino 1993
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Growth towards a set of similar mass embryos.....

(Ida & Makino 1993)

The processes that affect e and i are: 
- Scattering of small bodies by large body: e, i ➚  
- Large mass: Dynamical friction with small planetesimals: e, i ➘ 
- gas drag (leading to equilibrium for the planetesimals): all e, i ➘
Numerical experiments show that:
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With this we have
The relative growth rate is

i.e. slowing down with increasing mass. Growth proceeds towards a 
set of similar mass embryos.. (from where the name “oligarchy”).



Once the gaseous nebula dispersed (after ~10 Myrs), and all 
planetesimals have been accreted into oligarchs: 
•no mechanisms (gas damping, viscous friction) to damp the random 

velocities of the big bodies  
•Gravitational scattering increases the random velocities to v~vesc, 

meaning that Fg becomes ~1. 

Orderly growth

The collisional cross section is thus reduced to the geometrical cross 
section. Growth in this regime is very slow.
With Fg =1, the master equation becomes  

or in relative terms

The growth rate decreases with increasing mass as in the oligarchic 
regime. However, Fg is much smaller than in the oligarchic regime.



Orderly growth
Orderly growth is the final regime for planet growth, at least in the 
inner solar system.
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• Star, planetesimal swarm & 
growing planet at 5.2 AU 

• Corrotating coord. system 

• Planet also accretes gas 

• Rapid gas accretion at 
about 0.9 Myr

N-Body simulation
co

re



3.5 Growth as a function of 
semimajor axis



•Growth faster at small distances. Annulus of growth moves outwards. 
•But stops at smaller (isolation) masses. No giant planet in situ. 
•Quick and massive: Beyond the iceline (here @ 2.7 AU). 
•Higher Σ: Protoplanets more massive & quicker: giant planet cores > 10 Me.

5xMMSNC. Mordasini et al.: Extrasolar planet population synthesis. I. 1149

Fig. 7. Snapshots of the embryo mass (solid line) as a function of semimajor axis at four moments in time for two different solid surface densities.
The dashed line is the isolation mass. The dotted line is Memb,0 = 0.6 M⊕. The initial solid surface density at 1 AU is 7 g/cm2 (left panel) and
35 g/cm2 (right panel). It should be kept in mind that this kind of calculation is needed to generate the start time tstart when the embryo is put into
the formation model. The real evolution of the solid core for M > 0.6 M⊕ is in general much more complex than plotted here. In this figure, we
have continued the calculations up to the isolation mass to allow comparison with other models.

the results are quite similar, even if core growth proceeds at
large orbital distances somewhat faster in our model. Compared
to Chambers (2006) one finds that core growth in our model is
faster than in his simple equilibrium model, but slower than in
his complete model that is considerably more complex, includ-
ing e.g. planetesimal fragmentation.

As mentioned in Sect. 4.4, we only start embryos in that part
of the disk where Miso ≥ Memb,0 and tdisk ≥ tstart. The latter
condition gives an outer bound for possible starting positions.
The reasoning behind it is that if one of the numerous plane-
tary seeds can form while the disk is still present, it would have
done so, and that it is a candidate to eventually become a giant
planet observable today. In other parts of the disk, seed embryos
also form, but they remain very small during the presence of the
gaseous disk. Thus, we aim at minimizing the negative side ef-
fects of having only one seed per disk on the population of giant
planets, but at the same time make our populations incomplete
at small masses (cf. Sect. 2.4).

For a significant fraction (∼28%) of the sets of initial con-
ditions we draw, one or both of the two aforementioned con-
ditions cannot be fulfilled anywhere in the disk, namely when
fD/G and/or Σ0 come from the low tail of their distributions,
while Ṁw is high. In such cases, no calculations were made, but
we keep the record of the corresponding initial conditions where
the formation of sizable planets is not possible and correct for
them when calculating for example overall detection probabili-
ties (Paper II).

5. Results

Once all Monte Carlo variables have been drawn, the next step
consists of computing the formation of the planet correspond-
ing to these initial conditions. This process can be illustrated by
means of formation tracks in the mass-distance plane. Except
where otherwise stated, all results are obtained for a population
with α = 0.007 and fI = 0.001. The reason for this choice is

that the resulting sub-population of observable synthetic planets
reasonably well reproduces the observed population (Paper II).

5.1. Planetary formation tracks

Figure 8 shows formation tracks of about 1500 randomly cho-
sen synthetic planets. The tracks lead from the initial position at
a(t = 0) = astart and the fixed M(t = 0) = Memb,0 to the final po-
sition marked by a large black symbol when planet growth and
migration stops. The color of the track indicates the migration
mode: Red for type I migration, blue for ordinary (disk domi-
nated) type II migration and green for the braking phase. In this
phase, planet dominated type II migration occurs (Eq. (3)) and
the planetary gas accretion rate is given by the rate at which the
disk can supply gas (Eq. (5)).

Even if the tracks show a great diversity, one can distinguish
groups of planets with similar tracks. These groups are due to
different formation stages that planets might undergo. In the next
sections, we study representative tracks of four such groups.

5.1.1. Tracks of “failed cores”

During the first stage of formation at low masses, type I migra-
tion (red) occurs. Since for this example population type I mi-
gration is very slow ( fI = 0.001), the tracks are almost vertical.
Planets that have migrated as type I only are represented by filled
circles in Fig. 8.

For most embryos, this first stage is also the final one. Their
evolution stops at low masses because most initial conditions do
not allow the formation of more massive planets during the life-
time of the disk. Therefore, most seeds (50−75%, see Paper II)
contribute to building up a large population of “failed cores”
with M ∼ 1−10 M⊕ which, from the point of view of giant planet
formation, failed to accrete a significant amount of gas. The pop-
ulation synthesis calculations of Ida & Lin (2004a, 2008) also

1xMMSNΣ (1AU)=7 g/cm2

Growth as function of semimajor axis

Low random velocities: needs small planetesimals, full 3 body Fg



• Accretion rate: gravity and gas drag

dM

dt
= 2RH⌃P vH

for bodies with tenc≈ tfriction  (1-100 cm)

 Lam
brechts & Johansen 2012

Growth is a factor 
    30-103 (5 AU)  
102 -104 (50 AU)  

faster than planetesimals
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New vision: pebble accretion
• Growth by accretion of pebbles instead of planetesimals

• Need to have a big starting body to have pebble accretion going…



dust

planetesimals protoplanets

in presence of gas in absence of gas

giant  
impacts

St
ar

 &
 p

ro
to

pl
an

et
ar

y 
di

sk

giant 
planets

107 years

orbital 
migration

terrestrial  
planets

108 years

dynamical re- 
arrangement 

4. Terrestrial planet formation



•Once damping influence of the gas disk gone, eccentricity grows, and 
growth from Miso (oligarchs) with 0.01 - 0.1 MEarth to final masses by giant 
impacts starts. 
• Evolution until long time stable configuration is reached (sufficient 
mutual distances in term of Hill spheres).  
!
•Constraints (for the solar system): 

1. the orbits, in particular the small eccentricities (Earth: 0.03) 
2. the masse, in particular Mars’ small mass 
3. the formation time of Earth from isotope dating (50-100 Myr) 
4. the bulk structure of the asteroid belt (no big bodies) 
5. Earth’ relatively large water content (mass fraction 10-3) 
6. influence from Jupiter & Saturn 

!
•Method: N body simulation.

Terrestrial planet formation



Time evolution of 1885 embryos with Jupiter at 5.2 AU present from t=0. 
MMSN surface density.

- lasts of order 200 Myr	
- considerable mixing	
- delivery of water	
- giant collisions

Raymond, Quinn & Lunine 2006

Simulation of the inner Solar System

The color of each particle represents its water content, and the dark inner circle 
represents the relative size of its iron core.



•Solid disk extends  
to about 4 AU	

Solar system: classical models

Earth’s current water content without accounting for any water loss
(the Earth’sWMF is! 10"3; Lécuyer et al., 1998). In contrast, the three
planets from the EEJS simulations each had feeding zones of less than
1.7 AU inwidth.Very littlematerial fromexterior to2 AUwas incorpo-

rated into the EEJS planets, with the notable exception of one embryo
that originated at 2.64 AU andwas the accretion seed of theMars ana-
log. Thus, the Earth and Venus analogs are very dry, but theMars ana-
log is very water-rich.

Fig. 3. Snapshots in time from a simulation with Jupiter and Saturn in 3:2 mean motion resonance (JSRES). The size of each body is proportional to its mass(1/3) (but is not to
scale on the x axis). The color of each body corresponds to its water content by mass, from red (dry) to blue (5% water). Jupiter is shown as the large black dot; Saturn is not
shown.

Fig. 4. Evolution of a simulation with Jupiter and Saturn starting at their current semimajor axes but with eccentricities of 0.1 (EEJS). Formatted as in Fig 3.

S.N. Raymond et al. / Icarus 203 (2009) 644–662 649Excitation at MMRs Substantial radial mixing

Giant planets?	
When where?

Raymond et al. 2009

Low eccentricity, water rich But Mars too large

•4 terrestrial planets 
with masses between 
0.6-1.8 MEarth	
•M, tform, ecc. and 
water content ok 	
•But Mars to massive, 
and 3 addit. embryos

Diffusion



Main results of N-body simulations
Chambers 2001 - Overall, the terrestrial planets 

   appear to be reasonably well 
   reproduced...
- Need Jupiter to be present early

- some failures:
- Mars and Mercury are too 
  large
- no large cores to form giant
  planets

- Some level of mixing present

Solar system: classical models: Mars problem

In classical models Mars’ 
mass is too large by a factor 
of 5–10 and embryos are 
often stranded in the 
asteroid belt.

A way out is to (arbitrarily) cut the disk of particles at about 1 AU (Hansen 
2008). Mars then diffuses out of the zone with other embryos and 
planetesimals and remains at a low mass. 
!
But what could cause this cut? Migration traps, or the “Grand Tack”.



Solar system formation: grand tack model

Jupiter migrates in to 1.5 AU, get in 2:3 MMR with Saturn. The two “tack” 
and migrate outward. The grand tack models explains 
	 -Mars’ low mass and short formation timescale 
	 -structure of the asteroid belt (C and S type asteroid) 
	 -provides initial conditions for the later dynamical evolution (Nice model)  
!

Walsh et al. 2011



!

!

Lecture II 
Giant planet formation and orbital 

migration 



Lecture 2 overview
1. Giant planet formation by gravitational instability 

2. Giant planet formation by core accretion 

2.1 Gas accretion 

2.2 Critical mass 

2.3 Jupiter in situ formation 

3. Orbital migration 

3.1 Impulse approximation 

3.2 Gap formation 

3.3 Migration timescales 
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1. Giant planet formation:  
Gravitational instability



Gravitational instability model
Self-gravitational collapse of a large disk gas patch. Also called direct 
collapse model.

!

Formation timescale ~ 1000 yrs  

Occurs at large radii 

Outcome of process unclear 

!

!

Find out with a classical linear stability analysis of a self-gravitating 
uniformly rotating fluid disk of zero thickness.

When does this occur?

Top-down process



Stability of an uniformingly rotating sheet
Stability of a self-gravitating fluid disk or sheet of zero thickness. Constant 
surface density Σ0 and temperature T. The sheet is in the z=0 plane and 
rotating with constant angular velocity Ω=Ωz. Governing equations (mass 
conservation, Euler, Poisson eqs.) in the rotating frame of reference are: 

Because the sheet is assumed to be isothermal, the vertically integrated 
pressure is given by:

p = p(�) = c2�

In the unperturbed state, we assume an equilibrium solution given by: 

⇥ = ⇥0; v = 0; p = p0 = c2⇥0 � ⇥⇤0 = ⇤2(xex + yey); �⇤0 = 4⇥G⇥0�(z)
(2)

(rot. frame!)

(1)
��
�t

+⇥ · (�v) = 0

(2)
⇥v
⇥t

+ v ·⌅v = � 1
�
⌅p�⌅�� 2(�⇤ v) + ⇥2(xex + yey)

(3) �⇤ = 4⇥G⇥�(z) (mass is in the z plane) (Laplace operator)



Stability of an uniformingly rotating sheet II
We now introduce small perturbations in the equilibrium quantities:

�(x, y, t) = �0 + ��1(x, y, t); v(x, y, t) = �v1(x, y, t); . . . ; �� 1

We keep only the terms linear in ε. We obtain the linearized equations for the 
evolution of the perturbations:

(4)
��1

�t
+ �0⇥ · (v1) = 0

(5)
⇥v1

⇥t
= � c2

�0
⇤�1 �⇤�1 � 2(�⇥ v1)

(6) �⇤1 = 4⇥G⇥1�(z)

We now look for solutions of the type:
�1(x, y, t) = �ae�i(k·r��t)

v1(x, y, t) = (vaxex + vayey)e�i(k·r��t)

�1(x, y, t) = �0e
�i(k·r��t)



Stability of an uniformingly rotating sheet III
Without loss of generality, we chose the x-axis to be parallel to the 
propagation of the perturbation k, i.e. k = kex

Poisson equation: Outside the sheet, we must have ��1 = 0
whereas in the z=0 plane we have the solution given above. Only function 
that satisfies these constraints and that vanishes at infinity is given by:

⇥1 =
2�G�a

|k| e�i(k·r��t)

This solution substituted back into the linearized equation yields:
(7) � i��a = �ik�0vax

(8) � i⇥vax =
c2ik�a

�0
+

2�Gi�ak

|k| + 2⇥vay

�i�vay = �2�vax(9)

This set of equations can be written in form of a matrix. It has a non trivial 
solution only when

⇥2 = 4⇥2 � 2�G�0|k| + k2c2 ⇥ 0

Dispersion relation for the uniformingly rotating sheet.



Stability of an uniformingly rotating sheet IV

The same criterion also applies for spiral galaxies.

⇥2 = 4⇥2 � 2�G�0|k| + k2c2 ⇥ 0

Note: - long wavelengths (small k) are stabilized by rotation 
         - short wavelength (large k) are stabilized by pressure

Dispersion relation for the uniformingly rotating sheet.

-If ω2>0, we have finite oscillations: stable disk 
	 	 	 This happens if the positive terms involving Ω and c2 dominate. 
-If ω2<0, the perturbations will grow exponentially in time: unstable disk! 
	 	 	 This happens if the negative term with Σ0 dominantes.

What does this equation mean? Ideas? p = p(�) = c2�



Stability of an uniformingly rotating sheet V
ω2

unstable region

most unstable wave length

Overall stability is achieved if ω(k)2 ≥ 0 
everywhere, i.e. the minimum -determined 
by setting the derivative equal zero - must 
still be positive. This condition yields the 
condition necessary for stability of the 
uniformly rotating sheet, the so called 
Toomre criterion (Toomre, 1964).

Q =
2c⇥

�G�0
> 1

stability criterion for the 
uniformly rotating sheet: 
cold, slowly rotating, massive 
disks are unstable

In hydrodynamic simulations: spiral waves form at Q~1.5

k0



If Q<1.5, but ΩK tcool>3: only spiral waves form, but no fragments 
	 -efficient angular momentum transport 
	 -disk heats up, mass decreases: disk gets marginally stable  
	 -instability should be a short phase  

Cooling criterion
The Toomre criterion says when the disk forms spiral density waves.

In order for the gas to also fragment in bound clumps a second 
criterion must be fulfilled: the gas must cool sufficiently fast. 
Otherwise the clump gets sheared apart (Gammie 2001):

t
cool

⌦ . �
crit

⇡ 3 i.e.
t
cool

t
orb

. 1

2



Early hydrodynamic models assumed (incorrectly) isothermal 
conditions (immediate cooling): artificial formation of clumps

csΩK

πGΣ
Q = ≲1.5

Toomre (1964)

Figure 4: Theoretical boundaries for objects formed by gravitational instability around GJ 758

(38). The red shaded area shows the range of masses and separations of such objects immedi-

ately after collapse. It is bounded by the Toomre criterion for unstable surface density under

irradiation from the star (solid red line) and the requirement for sufficiently fast cooling times

(dotted blue line). The dashed lines show the achievable masses for disk masses of 0.1, 0.2,

and 0.5 stellar masses, from bottom to top. The derived properties of GJ 758 B (black bars) are

consistent with these conditions within 1σ. These calculations assume a radius of 3R⊙, a mass

of 0.97M⊙, a metallicity of 0.22 and a temperature of 4200K for the protostar at zero age.

22

Min. from Toomre 
criterion for instability 

Allowed region

Impossible at small distances

Max. from cooling 
criterion  (τcool≤τorb)

GJ 758B 

Hubert Klahr

Rafikov 2005

but at small distances

cs 
� ⟹ Q 

�

cs 
� ⟹ τcool�

• Needs massive disks

• Unlikely inside ~30 AU

t
cool

t
orb

. 1

2&

Regions of gravitational instability 



Loading by infalling gas from collapsing cloud can drive the disk into 
instability 

Dittkrist et al. in prep.

• But instead of planets BD or companions stars may form… 
• Or everything falls into the star due to migration… 
• No consensus so far

New vision: GI during disk infall
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2. Giant planet formation:  
Core accretion



Outcome of the sequential growth process 
(last lecture)

Inner solar system

!
Many small 0.01 to 0.1 MEarth protoplanets.  
During the presence of the gas disk, growth stalled at this mass, as gas 
damping hinders development of high eccentricities (i.e. mutual collision 
between these bodies).   

Outer solar system

!
A few 1 to 10 MEarth protoplanets.  
If formed quickly and massive enough (M>ca 10 MEarth), potential to 
accrete gas to form a giant planet. 



Core accretion paradigm

Basic requirement: 
A critical core must form before the 
gas disappears. Not trivial!

Core accretion or nucleated instability

Perri & Cameron 1974; Mizuno et al 1978; Mizuno 1980; Bodenheimer & Pollack 1986; Pollack et al 1996; Alibert et al 2005 

Two steps: 
!
1. formation of a critical solid core (>10 Me) 
2. fast runaway gas accretion

Giant planets (such as Jupiter or Saturn): 90 - 95 % gas (H2 and He)  
Thus, must form during disk lifetime (3-10 Myrs).

The competing giant planet models 
•direct gravitational collapse (very fast, but other issues) 
•core accretion: may take long 



Constraints from Jupiter and Saturn
Internal structure of the giant planets is obtained through modeling. 
Adjust heavy element content so as to meet observations (mass, 
radius, gravitational moments, surface abundance, jovian seismology) 
!
Jupiter: enriched 1.5-6 times solar.  
Saturn: enriched 6-14 times solar).  
But: large uncertainties, from the EOS. 

Saumon  
&  
Guillot  
2004

The cores of Jupiter and Saturn

-  both Jupiter and Saturn are enriched in heavy elements compared to solar: 
    Jupiter: 11 !  MZ/MEarth ! 42  (enriched 1.5-6 times solar)
 Saturn:  19 !  MZ/MEarth ! 31  (enriched 6-14 times solar)
-  limits on solid core masses: 
 Jupiter: 0 ! Mcore/MEarth ! 14
 Saturn:  8 ! Mcore/MEarth ! 24

The internal structure of the planets is obtained through modeling. A core-
envelope structure is adopted a priori and then adjusted so as to meet 
observations (mass, radius, gravitational moments, surface abundance, etc.)

Saumon & Guillot 2004

The cores of Jupiter and Saturn

-  both Jupiter and Saturn are enriched in heavy elements compared to solar: 
    Jupiter: 11 !  MZ/MEarth ! 42  (enriched 1.5-6 times solar)
 Saturn:  19 !  MZ/MEarth ! 31  (enriched 6-14 times solar)
-  limits on solid core masses: 
 Jupiter: 0 ! Mcore/MEarth ! 14
 Saturn:  8 ! Mcore/MEarth ! 24

The internal structure of the planets is obtained through modeling. A core-
envelope structure is adopted a priori and then adjusted so as to meet 
observations (mass, radius, gravitational moments, surface abundance, etc.)

Saumon & Guillot 2004

This is regarded as a indication that core accretion lead to the formation of 
Jupiter and Saturn. Recently it was however found that direct collapse can also 
lead (under certain circumstances) to enriched planets.



!

2.1 Gas accretion 



Mass growth

Gas accretion rate given by ability to radiate away energy (TKH): 
!
liberated gravitational potential energy-> radiate away (cool)->contract-
>empty space inside Hill sphere->gas flows in from nebula (accretion)

Growth of the core: accretion of planetesimals (oligarchic) as in Lecture I

1D, radial structure equations as for stars:

4 Mordasini et al.

BP86; Guillot 2005; Broeg 2010):

dm
dr = 4πr2ρ dP

dr = −Gm
r2 ρ

dl
dr = 4πr2ρ

(

ϵ − T ∂S
∂t

)

dT
dr = T

P
dP
dr ∇

(2)

In these equations, r is the radius as measured from the planetary cen-
ter, m the mass inside r (including the core mass MZ), l the luminosity
at r, ρ, P, T, S the gas density, pressure, temperature and entropy, t the
time, and ∇ is given as

∇ = d ln T
d lnP = min(∇ad,∇rad) ∇rad = 3

64πσG
κlP
T 4m (3)

i.e. by the minimum of the adiabatic gradient ∇ad which is directly
given by the equation of state (in convective zones) or the radiative
gradient ∇rad (in radiative zones) where κ is the opacity and σ is the
Stefan-Boltzmann constant.

Calculation of the luminosity

For the planetary population synthesis, where the evolution of thou-
sands of different planets is calculated, we need a stable and rapid
method for the numerical solution of these equations. We have there-
fore replaced the ordinary equation for dl/dr by the assumption that
l is constant within the envelope, and that we can derive the total lu-
minosity L (including solid and gas accretion, contraction and release
of internal heat) and its temporal evolution by total energy conserva-
tion arguments, an approach somewhat similar to Papaloizou & Nelson
(2005). We first recall that −dEtot/dt = L and that in the hydrostatic
case, the total energy is given as

Etot = Egrav + Eint = −

∫ M

0

Gm

r
dm +

∫ M

0
u dm =̇ − ξ

GM2

2R
(4)

where u is the specific internal energy, M the total mass, and R the
total radius of the planet. We have defined a parameter ξ, which repre-
sents the distribution of mass within the planet and its internal energy
content. The ξ can be found for any given structure at time t with the
equations above. Then one can write

− d
dtEtot = L = LM + LR + Lξ = ξGM

R Ṁ −
ξGM2

2R2 Ṙ + GM2

2R ξ̇ (5)

where Ṁ = ṀZ + ṀXY is the total accretion rate of solids and gas, and
Ṙ is the rate of change of the total radius. All quantities except ξ̇ can
readily be calculated at time t. We now set

L ≃ C (LM + LR) . (6)

(1) (2)

(3) (4)

4 Mordasini et al.

BP86; Guillot 2005; Broeg 2010):

dm
dr = 4πr2ρ dP

dr = −Gm
r2 ρ

dl
dr = 4πr2ρ

(

ϵ − T ∂S
∂t

)

dT
dr = T

P
dP
dr ∇

(2)

In these equations, r is the radius as measured from the planetary cen-
ter, m the mass inside r (including the core mass MZ), l the luminosity
at r, ρ, P, T, S the gas density, pressure, temperature and entropy, t the
time, and ∇ is given as

∇ = d ln T
d lnP = min(∇ad,∇rad) ∇rad = 3

64πσG
κlP
T 4m (3)

i.e. by the minimum of the adiabatic gradient ∇ad which is directly
given by the equation of state (in convective zones) or the radiative
gradient ∇rad (in radiative zones) where κ is the opacity and σ is the
Stefan-Boltzmann constant.

Calculation of the luminosity

For the planetary population synthesis, where the evolution of thou-
sands of different planets is calculated, we need a stable and rapid
method for the numerical solution of these equations. We have there-
fore replaced the ordinary equation for dl/dr by the assumption that
l is constant within the envelope, and that we can derive the total lu-
minosity L (including solid and gas accretion, contraction and release
of internal heat) and its temporal evolution by total energy conserva-
tion arguments, an approach somewhat similar to Papaloizou & Nelson
(2005). We first recall that −dEtot/dt = L and that in the hydrostatic
case, the total energy is given as

Etot = Egrav + Eint = −

∫ M

0

Gm

r
dm +

∫ M

0
u dm =̇ − ξ

GM2

2R
(4)

where u is the specific internal energy, M the total mass, and R the
total radius of the planet. We have defined a parameter ξ, which repre-
sents the distribution of mass within the planet and its internal energy
content. The ξ can be found for any given structure at time t with the
equations above. Then one can write

− d
dtEtot = L = LM + LR + Lξ = ξGM

R Ṁ −
ξGM2

2R2 Ṙ + GM2

2R ξ̇ (5)

where Ṁ = ṀZ + ṀXY is the total accretion rate of solids and gas, and
Ṙ is the rate of change of the total radius. All quantities except ξ̇ can
readily be calculated at time t. We now set

L ≃ C (LM + LR) . (6)

Mass conservation 
Hydrostat. equilibrium 
Energy conservation 
Energy transport 
!

Growth of the envelope (gas)

!
Notable difference to stars:  

-no nuclear fusion 
-but: impacting planetesimals. Dominant source of energy early on. 



2.2 Critical mass 



Analytical toy model

Derivation of the critical core mass with a toy model

Solve simplified structure equations (Stevenson 1982). One finds: For too 
massive cores, no envelope in hydrostatic equilibrium exists (critical core 
mass): rapid gas accretion must ensue.

simplified  
structure  
equation

Core mass Mcore , core radius Rcore, gaseous envelope of mass Menv. 
Luminosity from accretion of planetesimals onto the core only
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Rout, which marks the boundary between the gas bound
to the planet and the gas in the protoplanetary disk.
Rout may be determined by thermal effects (in which
case Rout ∼ GMt/c2s, with cs the disk sound speed) or
by tidal considerations (giving an outer radius of rH),
whichever is the smaller. If the envelope is of low mass,
then the largest contribution to the luminosity is from
accretion of planetesimals onto the core. This yields a
luminosity,

L =
GMcoreṀcore

Rcore
(192)

which is constant through the envelope.
If we assume that radiative diffusion dominates the

energy transport, then the structure of the envelope is
determined by the equations of hydrostatic equilibrium
and radiative diffusion,

dP

dr
= −

GM(r)

r2
ρ (193)

L

4πr2
= −

16

3

σT 3

κRρ

dT

dr
(194)

where σ is the Stefan-Boltzmann constant and κR the
Rosseland mean opacity (assumed constant). Eliminat-
ing the density between these equations we find that,

dT

dP
=

3κRL

64πσGMT 3
. (195)

We now integrate this equation inward from the outer
boundary, making the approximation that M(r) ≈ Mt

and taking L and κR to be constants,

∫ T

Tdisk

T 3dT =
3κRL

64πσGMt

∫ P

Pdisk

dP. (196)

Once we are well inside the planet we expect that T 4 ≫
T 4
disk and that P ≫ Pdisk, so the integral yields, approx-

imately,

T 4 ≃
3

16π

κRL

σGMt
P. (197)

Substituting P in this equation with an ideal gas equation
of state,

P =
kB
µmp

ρT, (198)

we eliminate T 3 in favor of the expression involving
dT/dr and integrate once more with respect to radius
to obtain,

T ≃
(

µmp

kB

)

GMt

4r
(199)

ρ ≃
64πσ

3κRL

(

µmpGMt

4kB

)4 1

r3
. (200)

Having derived the density profile the mass of the enve-
lope follows immediately,

Menv =

∫ Rout

Rcore

4πr2ρ(r)dr

=
256π2σ

3κRL

(

µmpGMt

4kB

)4

ln

(

Rout

Rcore

)

. (201)

The right-hand-side of this equation has a strong depen-
dence on the total planet mass Mt and a weaker depen-
dence on the core mass Mcore via the expression for the
luminosity,

L =
GMcoreṀcore

Rcore
∝ M2/3

coreṀcore. (202)

In principle there are further dependencies to consider
since Rout is a function of Mt and Rcore is a function of
Mcore, but these enter only logarithmically and can be
safely ignored. Noting that,

Mcore = Mt −Menv, (203)

we find that,

Mcore = Mt −
(

C

κRṀcore

)

M4
t

M2/3
core

, (204)

where we have shown explicitly the dependence on the en-
velope opacity and planetesimal accretion rate but have
swept all the remaining constants (and near-constants)
into a single constant C.
Solutions to equation (204) are plotted as Figure 27.

One sees that for fixed Ṁcore, there exists a maximum or
critical core mass Mcrit beyond which no solution is pos-
sible. The physical interpretation of this result — whose
origin is not terribly clear even within this simple model
— is that if one tries to build a planet with a core mass
above the critical mass hydrostatic equilibrium cannot be
achieved in the envelope. Rather the envelope will con-
tract, and further gas will fall in as fast as gravitational
potential energy can be radiated.
This toy model should not be taken too seriously. How-

ever, it does illustrate the most important result from
more detailed calculations — namely that the critical
mass increases with larger Ṁcore and with enhanced opac-
ity. Ikoma, Nakazawa & Emori (2000) derive an approx-
imate fit to numerical results,

Mcrit

M⊕
≈ 12

(

Ṁcore

10−6 M⊕yr−1

)1/4
(

κR

1 cm2g−1

)1/4

(205)
where the power-law indices are uncertain by around
±0.05. The weak dependence of the critical core mass on
the planetesimal accretion rate means that, within a par-
ticular core accretion model, we can always speed up the
approach to runaway gas accretion simply by increasing
the assumed surface density of planetesimals in the vicin-
ity of the growing core. Contrary to what is sometimes

(1)

Energy transport by radiative diffusion only (no convection)
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Rout, which marks the boundary between the gas bound
to the planet and the gas in the protoplanetary disk.
Rout may be determined by thermal effects (in which
case Rout ∼ GMt/c2s, with cs the disk sound speed) or
by tidal considerations (giving an outer radius of rH),
whichever is the smaller. If the envelope is of low mass,
then the largest contribution to the luminosity is from
accretion of planetesimals onto the core. This yields a
luminosity,

L =
GMcoreṀcore

Rcore
(192)

which is constant through the envelope.
If we assume that radiative diffusion dominates the

energy transport, then the structure of the envelope is
determined by the equations of hydrostatic equilibrium
and radiative diffusion,

dP

dr
= −

GM(r)

r2
ρ (193)

L

4πr2
= −

16

3

σT 3

κRρ

dT

dr
(194)

where σ is the Stefan-Boltzmann constant and κR the
Rosseland mean opacity (assumed constant). Eliminat-
ing the density between these equations we find that,

dT

dP
=

3κRL

64πσGMT 3
. (195)

We now integrate this equation inward from the outer
boundary, making the approximation that M(r) ≈ Mt

and taking L and κR to be constants,

∫ T

Tdisk

T 3dT =
3κRL

64πσGMt

∫ P

Pdisk

dP. (196)

Once we are well inside the planet we expect that T 4 ≫
T 4
disk and that P ≫ Pdisk, so the integral yields, approx-

imately,

T 4 ≃
3

16π

κRL

σGMt
P. (197)

Substituting P in this equation with an ideal gas equation
of state,

P =
kB
µmp

ρT, (198)

we eliminate T 3 in favor of the expression involving
dT/dr and integrate once more with respect to radius
to obtain,

T ≃
(

µmp

kB

)

GMt

4r
(199)

ρ ≃
64πσ

3κRL

(

µmpGMt

4kB

)4 1

r3
. (200)

Having derived the density profile the mass of the enve-
lope follows immediately,

Menv =

∫ Rout

Rcore

4πr2ρ(r)dr

=
256π2σ

3κRL

(

µmpGMt

4kB

)4

ln

(

Rout

Rcore

)

. (201)

The right-hand-side of this equation has a strong depen-
dence on the total planet mass Mt and a weaker depen-
dence on the core mass Mcore via the expression for the
luminosity,

L =
GMcoreṀcore

Rcore
∝ M2/3

coreṀcore. (202)

In principle there are further dependencies to consider
since Rout is a function of Mt and Rcore is a function of
Mcore, but these enter only logarithmically and can be
safely ignored. Noting that,

Mcore = Mt −Menv, (203)

we find that,

Mcore = Mt −
(

C

κRṀcore

)

M4
t

M2/3
core

, (204)

where we have shown explicitly the dependence on the en-
velope opacity and planetesimal accretion rate but have
swept all the remaining constants (and near-constants)
into a single constant C.
Solutions to equation (204) are plotted as Figure 27.

One sees that for fixed Ṁcore, there exists a maximum or
critical core mass Mcrit beyond which no solution is pos-
sible. The physical interpretation of this result — whose
origin is not terribly clear even within this simple model
— is that if one tries to build a planet with a core mass
above the critical mass hydrostatic equilibrium cannot be
achieved in the envelope. Rather the envelope will con-
tract, and further gas will fall in as fast as gravitational
potential energy can be radiated.
This toy model should not be taken too seriously. How-

ever, it does illustrate the most important result from
more detailed calculations — namely that the critical
mass increases with larger Ṁcore and with enhanced opac-
ity. Ikoma, Nakazawa & Emori (2000) derive an approx-
imate fit to numerical results,

Mcrit

M⊕
≈ 12

(

Ṁcore

10−6 M⊕yr−1

)1/4
(

κR

1 cm2g−1

)1/4

(205)
where the power-law indices are uncertain by around
±0.05. The weak dependence of the critical core mass on
the planetesimal accretion rate means that, within a par-
ticular core accretion model, we can always speed up the
approach to runaway gas accretion simply by increasing
the assumed surface density of planetesimals in the vicin-
ity of the growing core. Contrary to what is sometimes

(2)

(3)

We can combine these equations into
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Rout, which marks the boundary between the gas bound
to the planet and the gas in the protoplanetary disk.
Rout may be determined by thermal effects (in which
case Rout ∼ GMt/c2s, with cs the disk sound speed) or
by tidal considerations (giving an outer radius of rH),
whichever is the smaller. If the envelope is of low mass,
then the largest contribution to the luminosity is from
accretion of planetesimals onto the core. This yields a
luminosity,

L =
GMcoreṀcore

Rcore
(192)

which is constant through the envelope.
If we assume that radiative diffusion dominates the

energy transport, then the structure of the envelope is
determined by the equations of hydrostatic equilibrium
and radiative diffusion,

dP

dr
= −

GM(r)

r2
ρ (193)

L

4πr2
= −

16

3

σT 3

κRρ

dT

dr
(194)

where σ is the Stefan-Boltzmann constant and κR the
Rosseland mean opacity (assumed constant). Eliminat-
ing the density between these equations we find that,

dT

dP
=

3κRL

64πσGMT 3
. (195)

We now integrate this equation inward from the outer
boundary, making the approximation that M(r) ≈ Mt

and taking L and κR to be constants,

∫ T

Tdisk

T 3dT =
3κRL

64πσGMt

∫ P

Pdisk

dP. (196)

Once we are well inside the planet we expect that T 4 ≫
T 4
disk and that P ≫ Pdisk, so the integral yields, approx-

imately,

T 4 ≃
3

16π

κRL

σGMt
P. (197)

Substituting P in this equation with an ideal gas equation
of state,

P =
kB
µmp

ρT, (198)

we eliminate T 3 in favor of the expression involving
dT/dr and integrate once more with respect to radius
to obtain,

T ≃
(

µmp

kB

)

GMt

4r
(199)

ρ ≃
64πσ

3κRL

(

µmpGMt

4kB

)4 1

r3
. (200)

Having derived the density profile the mass of the enve-
lope follows immediately,

Menv =

∫ Rout

Rcore

4πr2ρ(r)dr

=
256π2σ

3κRL

(

µmpGMt

4kB

)4

ln

(

Rout

Rcore

)

. (201)

The right-hand-side of this equation has a strong depen-
dence on the total planet mass Mt and a weaker depen-
dence on the core mass Mcore via the expression for the
luminosity,

L =
GMcoreṀcore

Rcore
∝ M2/3

coreṀcore. (202)

In principle there are further dependencies to consider
since Rout is a function of Mt and Rcore is a function of
Mcore, but these enter only logarithmically and can be
safely ignored. Noting that,

Mcore = Mt −Menv, (203)

we find that,

Mcore = Mt −
(

C

κRṀcore

)

M4
t

M2/3
core

, (204)

where we have shown explicitly the dependence on the en-
velope opacity and planetesimal accretion rate but have
swept all the remaining constants (and near-constants)
into a single constant C.
Solutions to equation (204) are plotted as Figure 27.

One sees that for fixed Ṁcore, there exists a maximum or
critical core mass Mcrit beyond which no solution is pos-
sible. The physical interpretation of this result — whose
origin is not terribly clear even within this simple model
— is that if one tries to build a planet with a core mass
above the critical mass hydrostatic equilibrium cannot be
achieved in the envelope. Rather the envelope will con-
tract, and further gas will fall in as fast as gravitational
potential energy can be radiated.
This toy model should not be taken too seriously. How-

ever, it does illustrate the most important result from
more detailed calculations — namely that the critical
mass increases with larger Ṁcore and with enhanced opac-
ity. Ikoma, Nakazawa & Emori (2000) derive an approx-
imate fit to numerical results,

Mcrit

M⊕
≈ 12

(

Ṁcore

10−6 M⊕yr−1

)1/4
(

κR

1 cm2g−1

)1/4

(205)
where the power-law indices are uncertain by around
±0.05. The weak dependence of the critical core mass on
the planetesimal accretion rate means that, within a par-
ticular core accretion model, we can always speed up the
approach to runaway gas accretion simply by increasing
the assumed surface density of planetesimals in the vicin-
ity of the growing core. Contrary to what is sometimes

(4)



Analytical toy model II

So called “radiative zero” solution. Replace P in eq. (6) with ideal gas EOS

Separate the variables to integrate making the approximation M(r) ≈ Mt 
(the total mass) and taking L and also κR to be constants (!)
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Rout, which marks the boundary between the gas bound
to the planet and the gas in the protoplanetary disk.
Rout may be determined by thermal effects (in which
case Rout ∼ GMt/c2s, with cs the disk sound speed) or
by tidal considerations (giving an outer radius of rH),
whichever is the smaller. If the envelope is of low mass,
then the largest contribution to the luminosity is from
accretion of planetesimals onto the core. This yields a
luminosity,

L =
GMcoreṀcore

Rcore
(192)

which is constant through the envelope.
If we assume that radiative diffusion dominates the

energy transport, then the structure of the envelope is
determined by the equations of hydrostatic equilibrium
and radiative diffusion,

dP

dr
= −

GM(r)

r2
ρ (193)

L

4πr2
= −

16

3

σT 3

κRρ

dT

dr
(194)

where σ is the Stefan-Boltzmann constant and κR the
Rosseland mean opacity (assumed constant). Eliminat-
ing the density between these equations we find that,

dT

dP
=

3κRL

64πσGMT 3
. (195)

We now integrate this equation inward from the outer
boundary, making the approximation that M(r) ≈ Mt

and taking L and κR to be constants,

∫ T

Tdisk

T 3dT =
3κRL

64πσGMt

∫ P

Pdisk

dP. (196)

Once we are well inside the planet we expect that T 4 ≫
T 4
disk and that P ≫ Pdisk, so the integral yields, approx-

imately,

T 4 ≃
3

16π

κRL

σGMt
P. (197)

Substituting P in this equation with an ideal gas equation
of state,

P =
kB
µmp

ρT, (198)

we eliminate T 3 in favor of the expression involving
dT/dr and integrate once more with respect to radius
to obtain,

T ≃
(

µmp

kB

)

GMt

4r
(199)

ρ ≃
64πσ

3κRL

(

µmpGMt

4kB

)4 1

r3
. (200)

Having derived the density profile the mass of the enve-
lope follows immediately,

Menv =

∫ Rout

Rcore

4πr2ρ(r)dr

=
256π2σ

3κRL

(

µmpGMt

4kB

)4

ln

(

Rout

Rcore

)

. (201)

The right-hand-side of this equation has a strong depen-
dence on the total planet mass Mt and a weaker depen-
dence on the core mass Mcore via the expression for the
luminosity,

L =
GMcoreṀcore

Rcore
∝ M2/3

coreṀcore. (202)

In principle there are further dependencies to consider
since Rout is a function of Mt and Rcore is a function of
Mcore, but these enter only logarithmically and can be
safely ignored. Noting that,

Mcore = Mt −Menv, (203)

we find that,

Mcore = Mt −
(

C

κRṀcore

)

M4
t

M2/3
core

, (204)

where we have shown explicitly the dependence on the en-
velope opacity and planetesimal accretion rate but have
swept all the remaining constants (and near-constants)
into a single constant C.
Solutions to equation (204) are plotted as Figure 27.

One sees that for fixed Ṁcore, there exists a maximum or
critical core mass Mcrit beyond which no solution is pos-
sible. The physical interpretation of this result — whose
origin is not terribly clear even within this simple model
— is that if one tries to build a planet with a core mass
above the critical mass hydrostatic equilibrium cannot be
achieved in the envelope. Rather the envelope will con-
tract, and further gas will fall in as fast as gravitational
potential energy can be radiated.
This toy model should not be taken too seriously. How-

ever, it does illustrate the most important result from
more detailed calculations — namely that the critical
mass increases with larger Ṁcore and with enhanced opac-
ity. Ikoma, Nakazawa & Emori (2000) derive an approx-
imate fit to numerical results,

Mcrit

M⊕
≈ 12

(

Ṁcore

10−6 M⊕yr−1

)1/4
(

κR

1 cm2g−1

)1/4

(205)
where the power-law indices are uncertain by around
±0.05. The weak dependence of the critical core mass on
the planetesimal accretion rate means that, within a par-
ticular core accretion model, we can always speed up the
approach to runaway gas accretion simply by increasing
the assumed surface density of planetesimals in the vicin-
ity of the growing core. Contrary to what is sometimes

(5)

Well inside the planet, T4 ≫ Tdisk4 and P ≫ Pdisk, so approximately
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Rout, which marks the boundary between the gas bound
to the planet and the gas in the protoplanetary disk.
Rout may be determined by thermal effects (in which
case Rout ∼ GMt/c2s, with cs the disk sound speed) or
by tidal considerations (giving an outer radius of rH),
whichever is the smaller. If the envelope is of low mass,
then the largest contribution to the luminosity is from
accretion of planetesimals onto the core. This yields a
luminosity,

L =
GMcoreṀcore

Rcore
(192)

which is constant through the envelope.
If we assume that radiative diffusion dominates the

energy transport, then the structure of the envelope is
determined by the equations of hydrostatic equilibrium
and radiative diffusion,

dP

dr
= −

GM(r)

r2
ρ (193)

L

4πr2
= −

16

3

σT 3

κRρ

dT

dr
(194)

where σ is the Stefan-Boltzmann constant and κR the
Rosseland mean opacity (assumed constant). Eliminat-
ing the density between these equations we find that,

dT

dP
=

3κRL

64πσGMT 3
. (195)

We now integrate this equation inward from the outer
boundary, making the approximation that M(r) ≈ Mt

and taking L and κR to be constants,

∫ T

Tdisk

T 3dT =
3κRL

64πσGMt

∫ P

Pdisk

dP. (196)

Once we are well inside the planet we expect that T 4 ≫
T 4
disk and that P ≫ Pdisk, so the integral yields, approx-

imately,

T 4 ≃
3

16π

κRL

σGMt
P. (197)

Substituting P in this equation with an ideal gas equation
of state,

P =
kB
µmp

ρT, (198)

we eliminate T 3 in favor of the expression involving
dT/dr and integrate once more with respect to radius
to obtain,

T ≃
(

µmp

kB

)

GMt

4r
(199)

ρ ≃
64πσ

3κRL

(

µmpGMt

4kB

)4 1

r3
. (200)

Having derived the density profile the mass of the enve-
lope follows immediately,

Menv =

∫ Rout

Rcore

4πr2ρ(r)dr

=
256π2σ

3κRL

(

µmpGMt

4kB

)4

ln

(

Rout

Rcore

)

. (201)

The right-hand-side of this equation has a strong depen-
dence on the total planet mass Mt and a weaker depen-
dence on the core mass Mcore via the expression for the
luminosity,

L =
GMcoreṀcore

Rcore
∝ M2/3

coreṀcore. (202)

In principle there are further dependencies to consider
since Rout is a function of Mt and Rcore is a function of
Mcore, but these enter only logarithmically and can be
safely ignored. Noting that,

Mcore = Mt −Menv, (203)

we find that,

Mcore = Mt −
(

C

κRṀcore

)

M4
t

M2/3
core

, (204)

where we have shown explicitly the dependence on the en-
velope opacity and planetesimal accretion rate but have
swept all the remaining constants (and near-constants)
into a single constant C.
Solutions to equation (204) are plotted as Figure 27.

One sees that for fixed Ṁcore, there exists a maximum or
critical core mass Mcrit beyond which no solution is pos-
sible. The physical interpretation of this result — whose
origin is not terribly clear even within this simple model
— is that if one tries to build a planet with a core mass
above the critical mass hydrostatic equilibrium cannot be
achieved in the envelope. Rather the envelope will con-
tract, and further gas will fall in as fast as gravitational
potential energy can be radiated.
This toy model should not be taken too seriously. How-

ever, it does illustrate the most important result from
more detailed calculations — namely that the critical
mass increases with larger Ṁcore and with enhanced opac-
ity. Ikoma, Nakazawa & Emori (2000) derive an approx-
imate fit to numerical results,

Mcrit

M⊕
≈ 12

(

Ṁcore

10−6 M⊕yr−1

)1/4
(

κR

1 cm2g−1

)1/4

(205)
where the power-law indices are uncertain by around
±0.05. The weak dependence of the critical core mass on
the planetesimal accretion rate means that, within a par-
ticular core accretion model, we can always speed up the
approach to runaway gas accretion simply by increasing
the assumed surface density of planetesimals in the vicin-
ity of the growing core. Contrary to what is sometimes

(6)
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Rout, which marks the boundary between the gas bound
to the planet and the gas in the protoplanetary disk.
Rout may be determined by thermal effects (in which
case Rout ∼ GMt/c2s, with cs the disk sound speed) or
by tidal considerations (giving an outer radius of rH),
whichever is the smaller. If the envelope is of low mass,
then the largest contribution to the luminosity is from
accretion of planetesimals onto the core. This yields a
luminosity,

L =
GMcoreṀcore

Rcore
(192)

which is constant through the envelope.
If we assume that radiative diffusion dominates the

energy transport, then the structure of the envelope is
determined by the equations of hydrostatic equilibrium
and radiative diffusion,

dP

dr
= −

GM(r)

r2
ρ (193)

L

4πr2
= −

16

3

σT 3

κRρ

dT

dr
(194)

where σ is the Stefan-Boltzmann constant and κR the
Rosseland mean opacity (assumed constant). Eliminat-
ing the density between these equations we find that,

dT

dP
=
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We now integrate this equation inward from the outer
boundary, making the approximation that M(r) ≈ Mt

and taking L and κR to be constants,

∫ T

Tdisk
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∫ P
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Once we are well inside the planet we expect that T 4 ≫
T 4
disk and that P ≫ Pdisk, so the integral yields, approx-
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Substituting P in this equation with an ideal gas equation
of state,

P =
kB
µmp

ρT, (198)

we eliminate T 3 in favor of the expression involving
dT/dr and integrate once more with respect to radius
to obtain,
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Having derived the density profile the mass of the enve-
lope follows immediately,
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The right-hand-side of this equation has a strong depen-
dence on the total planet mass Mt and a weaker depen-
dence on the core mass Mcore via the expression for the
luminosity,

L =
GMcoreṀcore

Rcore
∝ M2/3

coreṀcore. (202)

In principle there are further dependencies to consider
since Rout is a function of Mt and Rcore is a function of
Mcore, but these enter only logarithmically and can be
safely ignored. Noting that,

Mcore = Mt −Menv, (203)

we find that,
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where we have shown explicitly the dependence on the en-
velope opacity and planetesimal accretion rate but have
swept all the remaining constants (and near-constants)
into a single constant C.
Solutions to equation (204) are plotted as Figure 27.

One sees that for fixed Ṁcore, there exists a maximum or
critical core mass Mcrit beyond which no solution is pos-
sible. The physical interpretation of this result — whose
origin is not terribly clear even within this simple model
— is that if one tries to build a planet with a core mass
above the critical mass hydrostatic equilibrium cannot be
achieved in the envelope. Rather the envelope will con-
tract, and further gas will fall in as fast as gravitational
potential energy can be radiated.
This toy model should not be taken too seriously. How-

ever, it does illustrate the most important result from
more detailed calculations — namely that the critical
mass increases with larger Ṁcore and with enhanced opac-
ity. Ikoma, Nakazawa & Emori (2000) derive an approx-
imate fit to numerical results,
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where the power-law indices are uncertain by around
±0.05. The weak dependence of the critical core mass on
the planetesimal accretion rate means that, within a par-
ticular core accretion model, we can always speed up the
approach to runaway gas accretion simply by increasing
the assumed surface density of planetesimals in the vicin-
ity of the growing core. Contrary to what is sometimes

giving us an expression for T3.  Put back into equation (3) and trivially 
integrate again with respect to r to obtain the temperature as fct. of radius

(7)
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Rout, which marks the boundary between the gas bound
to the planet and the gas in the protoplanetary disk.
Rout may be determined by thermal effects (in which
case Rout ∼ GMt/c2s, with cs the disk sound speed) or
by tidal considerations (giving an outer radius of rH),
whichever is the smaller. If the envelope is of low mass,
then the largest contribution to the luminosity is from
accretion of planetesimals onto the core. This yields a
luminosity,

L =
GMcoreṀcore

Rcore
(192)

which is constant through the envelope.
If we assume that radiative diffusion dominates the

energy transport, then the structure of the envelope is
determined by the equations of hydrostatic equilibrium
and radiative diffusion,
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where σ is the Stefan-Boltzmann constant and κR the
Rosseland mean opacity (assumed constant). Eliminat-
ing the density between these equations we find that,

dT

dP
=

3κRL
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We now integrate this equation inward from the outer
boundary, making the approximation that M(r) ≈ Mt

and taking L and κR to be constants,

∫ T

Tdisk

T 3dT =
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Once we are well inside the planet we expect that T 4 ≫
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disk and that P ≫ Pdisk, so the integral yields, approx-
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Substituting P in this equation with an ideal gas equation
of state,

P =
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Having derived the density profile the mass of the enve-
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The right-hand-side of this equation has a strong depen-
dence on the total planet mass Mt and a weaker depen-
dence on the core mass Mcore via the expression for the
luminosity,

L =
GMcoreṀcore

Rcore
∝ M2/3

coreṀcore. (202)

In principle there are further dependencies to consider
since Rout is a function of Mt and Rcore is a function of
Mcore, but these enter only logarithmically and can be
safely ignored. Noting that,

Mcore = Mt −Menv, (203)

we find that,
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where we have shown explicitly the dependence on the en-
velope opacity and planetesimal accretion rate but have
swept all the remaining constants (and near-constants)
into a single constant C.
Solutions to equation (204) are plotted as Figure 27.

One sees that for fixed Ṁcore, there exists a maximum or
critical core mass Mcrit beyond which no solution is pos-
sible. The physical interpretation of this result — whose
origin is not terribly clear even within this simple model
— is that if one tries to build a planet with a core mass
above the critical mass hydrostatic equilibrium cannot be
achieved in the envelope. Rather the envelope will con-
tract, and further gas will fall in as fast as gravitational
potential energy can be radiated.
This toy model should not be taken too seriously. How-

ever, it does illustrate the most important result from
more detailed calculations — namely that the critical
mass increases with larger Ṁcore and with enhanced opac-
ity. Ikoma, Nakazawa & Emori (2000) derive an approx-
imate fit to numerical results,
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where the power-law indices are uncertain by around
±0.05. The weak dependence of the critical core mass on
the planetesimal accretion rate means that, within a par-
ticular core accretion model, we can always speed up the
approach to runaway gas accretion simply by increasing
the assumed surface density of planetesimals in the vicin-
ity of the growing core. Contrary to what is sometimes
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Rout, which marks the boundary between the gas bound
to the planet and the gas in the protoplanetary disk.
Rout may be determined by thermal effects (in which
case Rout ∼ GMt/c2s, with cs the disk sound speed) or
by tidal considerations (giving an outer radius of rH),
whichever is the smaller. If the envelope is of low mass,
then the largest contribution to the luminosity is from
accretion of planetesimals onto the core. This yields a
luminosity,

L =
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which is constant through the envelope.
If we assume that radiative diffusion dominates the

energy transport, then the structure of the envelope is
determined by the equations of hydrostatic equilibrium
and radiative diffusion,
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where σ is the Stefan-Boltzmann constant and κR the
Rosseland mean opacity (assumed constant). Eliminat-
ing the density between these equations we find that,

dT
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3κRL

64πσGMT 3
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We now integrate this equation inward from the outer
boundary, making the approximation that M(r) ≈ Mt

and taking L and κR to be constants,

∫ T

Tdisk

T 3dT =
3κRL

64πσGMt

∫ P
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Once we are well inside the planet we expect that T 4 ≫
T 4
disk and that P ≫ Pdisk, so the integral yields, approx-

imately,
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κRL

σGMt
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Substituting P in this equation with an ideal gas equation
of state,

P =
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we eliminate T 3 in favor of the expression involving
dT/dr and integrate once more with respect to radius
to obtain,
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Having derived the density profile the mass of the enve-
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The right-hand-side of this equation has a strong depen-
dence on the total planet mass Mt and a weaker depen-
dence on the core mass Mcore via the expression for the
luminosity,

L =
GMcoreṀcore

Rcore
∝ M2/3

coreṀcore. (202)

In principle there are further dependencies to consider
since Rout is a function of Mt and Rcore is a function of
Mcore, but these enter only logarithmically and can be
safely ignored. Noting that,

Mcore = Mt −Menv, (203)

we find that,

Mcore = Mt −
(
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)
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t
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where we have shown explicitly the dependence on the en-
velope opacity and planetesimal accretion rate but have
swept all the remaining constants (and near-constants)
into a single constant C.
Solutions to equation (204) are plotted as Figure 27.

One sees that for fixed Ṁcore, there exists a maximum or
critical core mass Mcrit beyond which no solution is pos-
sible. The physical interpretation of this result — whose
origin is not terribly clear even within this simple model
— is that if one tries to build a planet with a core mass
above the critical mass hydrostatic equilibrium cannot be
achieved in the envelope. Rather the envelope will con-
tract, and further gas will fall in as fast as gravitational
potential energy can be radiated.
This toy model should not be taken too seriously. How-

ever, it does illustrate the most important result from
more detailed calculations — namely that the critical
mass increases with larger Ṁcore and with enhanced opac-
ity. Ikoma, Nakazawa & Emori (2000) derive an approx-
imate fit to numerical results,
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where the power-law indices are uncertain by around
±0.05. The weak dependence of the critical core mass on
the planetesimal accretion rate means that, within a par-
ticular core accretion model, we can always speed up the
approach to runaway gas accretion simply by increasing
the assumed surface density of planetesimals in the vicin-
ity of the growing core. Contrary to what is sometimes

and, with eq. (6) and (7), also the density as function of radius.
(9)
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This is an implicit relation between the total and envelope mass. For the 
core mass we can of course write
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Rout, which marks the boundary between the gas bound
to the planet and the gas in the protoplanetary disk.
Rout may be determined by thermal effects (in which
case Rout ∼ GMt/c2s, with cs the disk sound speed) or
by tidal considerations (giving an outer radius of rH),
whichever is the smaller. If the envelope is of low mass,
then the largest contribution to the luminosity is from
accretion of planetesimals onto the core. This yields a
luminosity,

L =
GMcoreṀcore
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which is constant through the envelope.
If we assume that radiative diffusion dominates the

energy transport, then the structure of the envelope is
determined by the equations of hydrostatic equilibrium
and radiative diffusion,
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where σ is the Stefan-Boltzmann constant and κR the
Rosseland mean opacity (assumed constant). Eliminat-
ing the density between these equations we find that,
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We now integrate this equation inward from the outer
boundary, making the approximation that M(r) ≈ Mt

and taking L and κR to be constants,

∫ T

Tdisk

T 3dT =
3κRL

64πσGMt

∫ P
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Once we are well inside the planet we expect that T 4 ≫
T 4
disk and that P ≫ Pdisk, so the integral yields, approx-

imately,

T 4 ≃
3

16π

κRL

σGMt
P. (197)

Substituting P in this equation with an ideal gas equation
of state,

P =
kB
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ρT, (198)

we eliminate T 3 in favor of the expression involving
dT/dr and integrate once more with respect to radius
to obtain,
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Having derived the density profile the mass of the enve-
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The right-hand-side of this equation has a strong depen-
dence on the total planet mass Mt and a weaker depen-
dence on the core mass Mcore via the expression for the
luminosity,

L =
GMcoreṀcore

Rcore
∝ M2/3

coreṀcore. (202)

In principle there are further dependencies to consider
since Rout is a function of Mt and Rcore is a function of
Mcore, but these enter only logarithmically and can be
safely ignored. Noting that,

Mcore = Mt −Menv, (203)

we find that,
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(
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where we have shown explicitly the dependence on the en-
velope opacity and planetesimal accretion rate but have
swept all the remaining constants (and near-constants)
into a single constant C.
Solutions to equation (204) are plotted as Figure 27.

One sees that for fixed Ṁcore, there exists a maximum or
critical core mass Mcrit beyond which no solution is pos-
sible. The physical interpretation of this result — whose
origin is not terribly clear even within this simple model
— is that if one tries to build a planet with a core mass
above the critical mass hydrostatic equilibrium cannot be
achieved in the envelope. Rather the envelope will con-
tract, and further gas will fall in as fast as gravitational
potential energy can be radiated.
This toy model should not be taken too seriously. How-

ever, it does illustrate the most important result from
more detailed calculations — namely that the critical
mass increases with larger Ṁcore and with enhanced opac-
ity. Ikoma, Nakazawa & Emori (2000) derive an approx-
imate fit to numerical results,
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where the power-law indices are uncertain by around
±0.05. The weak dependence of the critical core mass on
the planetesimal accretion rate means that, within a par-
ticular core accretion model, we can always speed up the
approach to runaway gas accretion simply by increasing
the assumed surface density of planetesimals in the vicin-
ity of the growing core. Contrary to what is sometimes

Finally we find an implicit core mass - total mass relation (C=quasi-constant)
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Rout, which marks the boundary between the gas bound
to the planet and the gas in the protoplanetary disk.
Rout may be determined by thermal effects (in which
case Rout ∼ GMt/c2s, with cs the disk sound speed) or
by tidal considerations (giving an outer radius of rH),
whichever is the smaller. If the envelope is of low mass,
then the largest contribution to the luminosity is from
accretion of planetesimals onto the core. This yields a
luminosity,

L =
GMcoreṀcore

Rcore
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which is constant through the envelope.
If we assume that radiative diffusion dominates the

energy transport, then the structure of the envelope is
determined by the equations of hydrostatic equilibrium
and radiative diffusion,
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where σ is the Stefan-Boltzmann constant and κR the
Rosseland mean opacity (assumed constant). Eliminat-
ing the density between these equations we find that,
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64πσGMT 3
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We now integrate this equation inward from the outer
boundary, making the approximation that M(r) ≈ Mt

and taking L and κR to be constants,

∫ T

Tdisk

T 3dT =
3κRL

64πσGMt

∫ P
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Once we are well inside the planet we expect that T 4 ≫
T 4
disk and that P ≫ Pdisk, so the integral yields, approx-

imately,

T 4 ≃
3

16π

κRL

σGMt
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Substituting P in this equation with an ideal gas equation
of state,

P =
kB
µmp

ρT, (198)

we eliminate T 3 in favor of the expression involving
dT/dr and integrate once more with respect to radius
to obtain,

T ≃
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Having derived the density profile the mass of the enve-
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The right-hand-side of this equation has a strong depen-
dence on the total planet mass Mt and a weaker depen-
dence on the core mass Mcore via the expression for the
luminosity,

L =
GMcoreṀcore

Rcore
∝ M2/3

coreṀcore. (202)

In principle there are further dependencies to consider
since Rout is a function of Mt and Rcore is a function of
Mcore, but these enter only logarithmically and can be
safely ignored. Noting that,

Mcore = Mt −Menv, (203)

we find that,
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(
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where we have shown explicitly the dependence on the en-
velope opacity and planetesimal accretion rate but have
swept all the remaining constants (and near-constants)
into a single constant C.
Solutions to equation (204) are plotted as Figure 27.

One sees that for fixed Ṁcore, there exists a maximum or
critical core mass Mcrit beyond which no solution is pos-
sible. The physical interpretation of this result — whose
origin is not terribly clear even within this simple model
— is that if one tries to build a planet with a core mass
above the critical mass hydrostatic equilibrium cannot be
achieved in the envelope. Rather the envelope will con-
tract, and further gas will fall in as fast as gravitational
potential energy can be radiated.
This toy model should not be taken too seriously. How-

ever, it does illustrate the most important result from
more detailed calculations — namely that the critical
mass increases with larger Ṁcore and with enhanced opac-
ity. Ikoma, Nakazawa & Emori (2000) derive an approx-
imate fit to numerical results,
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where the power-law indices are uncertain by around
±0.05. The weak dependence of the critical core mass on
the planetesimal accretion rate means that, within a par-
ticular core accretion model, we can always speed up the
approach to runaway gas accretion simply by increasing
the assumed surface density of planetesimals in the vicin-
ity of the growing core. Contrary to what is sometimes

What does this equation mean?
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Rout, which marks the boundary between the gas bound
to the planet and the gas in the protoplanetary disk.
Rout may be determined by thermal effects (in which
case Rout ∼ GMt/c2s, with cs the disk sound speed) or
by tidal considerations (giving an outer radius of rH),
whichever is the smaller. If the envelope is of low mass,
then the largest contribution to the luminosity is from
accretion of planetesimals onto the core. This yields a
luminosity,

L =
GMcoreṀcore

Rcore
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which is constant through the envelope.
If we assume that radiative diffusion dominates the

energy transport, then the structure of the envelope is
determined by the equations of hydrostatic equilibrium
and radiative diffusion,
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where σ is the Stefan-Boltzmann constant and κR the
Rosseland mean opacity (assumed constant). Eliminat-
ing the density between these equations we find that,
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We now integrate this equation inward from the outer
boundary, making the approximation that M(r) ≈ Mt

and taking L and κR to be constants,

∫ T

Tdisk

T 3dT =
3κRL
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Once we are well inside the planet we expect that T 4 ≫
T 4
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Substituting P in this equation with an ideal gas equation
of state,

P =
kB
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ρT, (198)
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Having derived the density profile the mass of the enve-
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The right-hand-side of this equation has a strong depen-
dence on the total planet mass Mt and a weaker depen-
dence on the core mass Mcore via the expression for the
luminosity,

L =
GMcoreṀcore

Rcore
∝ M2/3

coreṀcore. (202)

In principle there are further dependencies to consider
since Rout is a function of Mt and Rcore is a function of
Mcore, but these enter only logarithmically and can be
safely ignored. Noting that,

Mcore = Mt −Menv, (203)

we find that,
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where we have shown explicitly the dependence on the en-
velope opacity and planetesimal accretion rate but have
swept all the remaining constants (and near-constants)
into a single constant C.
Solutions to equation (204) are plotted as Figure 27.

One sees that for fixed Ṁcore, there exists a maximum or
critical core mass Mcrit beyond which no solution is pos-
sible. The physical interpretation of this result — whose
origin is not terribly clear even within this simple model
— is that if one tries to build a planet with a core mass
above the critical mass hydrostatic equilibrium cannot be
achieved in the envelope. Rather the envelope will con-
tract, and further gas will fall in as fast as gravitational
potential energy can be radiated.
This toy model should not be taken too seriously. How-

ever, it does illustrate the most important result from
more detailed calculations — namely that the critical
mass increases with larger Ṁcore and with enhanced opac-
ity. Ikoma, Nakazawa & Emori (2000) derive an approx-
imate fit to numerical results,
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where the power-law indices are uncertain by around
±0.05. The weak dependence of the critical core mass on
the planetesimal accretion rate means that, within a par-
ticular core accretion model, we can always speed up the
approach to runaway gas accretion simply by increasing
the assumed surface density of planetesimals in the vicin-
ity of the growing core. Contrary to what is sometimes

With this density profile the mass of the envelope is obtained easily
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red: low planetesimal accretion rate 
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FIG. 27 Solutions to equation (204) for the core mass Mcore

and total mass Mtotal. The blue curve is for a higher plan-
etesimal accretion rate than for the red curve. The critical
core mass is shown as the vertical dashed line. One should
not take solutions to this toy model very seriously, but the
numbers have been fixed here to correspond roughly to the
values obtained from real calculations.

implied, there is no intrinsic difficulty in building planets
quickly via core accretion. However, faster growth oc-
curs at the expense of a larger final core mass. As we will
shortly note, this tradeoff is of concern since estimates
of the core mass of Jupiter are smaller than the values
obtained in the classic calculations of core accretion by
Pollack et al. (1996).
Although they appear very detailed, extant calcula-

tions of planet growth via core accretion should probably
be regarded as illustrative rather than definitive. Two
sources of uncertainty are particularly worrying:

• What is the magnitude of the opacity? Al-
though κR enters equation (205) as rather a weak
power, its magnitude is highly uncertain. Hubickyj,
Bodenheimer & Lissauer (2005), and more recently
Movshovitz et al. (2010), have computed core ac-
cretion models in which the opacity is either arbi-
trarily reduced or computed from a settling and co-
agulation model. These models suggest, first, that
the appropriate value of the opacity in the enve-
lope is greatly reduced (by a factor of the order
of 102) from the interstellar value (Podolak, 2003).
Second, they indicate that the reduced opacity re-
sults in substantially faster growth of massive plan-
ets. Formation time scales as short as a Myr, or
(for longer formation times) core masses as small
as 5 M⊕, now appear achievable.

• The neglect of core migration. Theoretical
work, which we will discuss more fully in a sub-
sequent Section, suggests that planets or planetary
cores with masses exceeding M⊕ are highly vulner-
able to radial migration as a consequence of grav-
itational torques exerted by the gas disk. This ef-
fect is not included in the calculations of Pollack
et al. (1996) or Hubickyj, Bodenheimer & Lissauer
(2005). Papaloizou & Terquem (1999) and Alibert
et al. (2005) have studied the effect of steady in-
ward migration on core formation, and have showed
that it makes a large change to the time scale and
outcome of the process. Matters could be different
again if the migration process is instead unsteady
(Rice & Armitage, 2003), or outward. Radial mi-
gration could also be driven by dynamical inter-
actions between growing cores and planetesimals
(Levison, Thommes & Duncan, 2010).

To summarize, the broad outlines of how core accretion
works are well established, but even the most sophisti-
cated models are probably lacking some essential physical
elements.

2. Gravitational instability model

A sufficiently massive and / or cold gas disk is gravita-
tionally unstable19. If — and this is a big if — gravita-
tional instability leads to fragmentation this can lead to
massive planet formation (Cameron, 1978; Kuiper, 1951).
Durisen et al. (2007) provides a recent review of the sta-
tus of the gravitational instability model for giant planet
formation.
We have already derived the necessary conditions for

gravitational instability to occur. We need the Toomre
Q parameter to be low enough, specifically,

Q ≡
csΩ

πGΣ
< Qcrit ≃ 1 (206)

where cs is the sound speed in a gas disk of local sur-
face density Σ and the disk mass is assumed to be
small enough that the distinction between the orbital
and epicyclic frequencies is of little import. If we con-
sider a disk with h/r = 0.05 at 10 AU around a Solar
mass star, then the relation h/r = cs/vφ yields a sound
speed cs ≃ 0.5 kms−1. To attain Q = 1, we then require
a surface density,

Σ ≈ 1.5× 103 gcm2. (207)

19 The terminology used to discuss this process is potentially con-
fusing. I will use the term gravitational instability to refer to
disks in which the self-gravity of the gas is significant enough to
alter the structure or evolution of the disk. Fragmentation refers
to the case where gravitational instability leads to the breakup
of the disk into bound objects.

Large accretion rate or opacity: high Mcrit 
!
Physical interpretation:  
Core mass above > critical mass:  no 
hydrostatic equilibrium in the envelope. 
Gravity wins over pressure. 
!

Armitage 2007

Rather:  
1) the envelope has to contract (generating luminosity in this way to 
counteract gravity) 
2) further gas will fall in as fast as gravitational potential energy can be 
radiated (runaway).
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Rout, which marks the boundary between the gas bound
to the planet and the gas in the protoplanetary disk.
Rout may be determined by thermal effects (in which
case Rout ∼ GMt/c2s, with cs the disk sound speed) or
by tidal considerations (giving an outer radius of rH),
whichever is the smaller. If the envelope is of low mass,
then the largest contribution to the luminosity is from
accretion of planetesimals onto the core. This yields a
luminosity,

L =
GMcoreṀcore

Rcore
(192)

which is constant through the envelope.
If we assume that radiative diffusion dominates the

energy transport, then the structure of the envelope is
determined by the equations of hydrostatic equilibrium
and radiative diffusion,

dP

dr
= −

GM(r)

r2
ρ (193)

L

4πr2
= −

16

3

σT 3

κRρ

dT

dr
(194)

where σ is the Stefan-Boltzmann constant and κR the
Rosseland mean opacity (assumed constant). Eliminat-
ing the density between these equations we find that,

dT

dP
=

3κRL

64πσGMT 3
. (195)

We now integrate this equation inward from the outer
boundary, making the approximation that M(r) ≈ Mt

and taking L and κR to be constants,

∫ T

Tdisk

T 3dT =
3κRL

64πσGMt

∫ P

Pdisk

dP. (196)

Once we are well inside the planet we expect that T 4 ≫
T 4
disk and that P ≫ Pdisk, so the integral yields, approx-

imately,

T 4 ≃
3

16π

κRL

σGMt
P. (197)

Substituting P in this equation with an ideal gas equation
of state,

P =
kB
µmp

ρT, (198)

we eliminate T 3 in favor of the expression involving
dT/dr and integrate once more with respect to radius
to obtain,

T ≃
(

µmp

kB

)

GMt

4r
(199)

ρ ≃
64πσ

3κRL

(

µmpGMt

4kB

)4 1

r3
. (200)

Having derived the density profile the mass of the enve-
lope follows immediately,

Menv =

∫ Rout

Rcore

4πr2ρ(r)dr

=
256π2σ

3κRL

(

µmpGMt

4kB

)4

ln

(

Rout

Rcore

)

. (201)

The right-hand-side of this equation has a strong depen-
dence on the total planet mass Mt and a weaker depen-
dence on the core mass Mcore via the expression for the
luminosity,

L =
GMcoreṀcore

Rcore
∝ M2/3

coreṀcore. (202)

In principle there are further dependencies to consider
since Rout is a function of Mt and Rcore is a function of
Mcore, but these enter only logarithmically and can be
safely ignored. Noting that,

Mcore = Mt −Menv, (203)

we find that,

Mcore = Mt −
(

C

κRṀcore

)

M4
t

M2/3
core

, (204)

where we have shown explicitly the dependence on the en-
velope opacity and planetesimal accretion rate but have
swept all the remaining constants (and near-constants)
into a single constant C.
Solutions to equation (204) are plotted as Figure 27.

One sees that for fixed Ṁcore, there exists a maximum or
critical core mass Mcrit beyond which no solution is pos-
sible. The physical interpretation of this result — whose
origin is not terribly clear even within this simple model
— is that if one tries to build a planet with a core mass
above the critical mass hydrostatic equilibrium cannot be
achieved in the envelope. Rather the envelope will con-
tract, and further gas will fall in as fast as gravitational
potential energy can be radiated.
This toy model should not be taken too seriously. How-

ever, it does illustrate the most important result from
more detailed calculations — namely that the critical
mass increases with larger Ṁcore and with enhanced opac-
ity. Ikoma, Nakazawa & Emori (2000) derive an approx-
imate fit to numerical results,

Mcrit

M⊕
≈ 12

(

Ṁcore

10−6 M⊕yr−1

)1/4
(

κR

1 cm2g−1

)1/4

(205)
where the power-law indices are uncertain by around
±0.05. The weak dependence of the critical core mass on
the planetesimal accretion rate means that, within a par-
ticular core accretion model, we can always speed up the
approach to runaway gas accretion simply by increasing
the assumed surface density of planetesimals in the vicin-
ity of the growing core. Contrary to what is sometimes



2.3 Jupiter in situ formation 



Classical models

Compared to the early (toy) models, the classical models (in particular 
Pollack et al. 1996) calculate 
!
• the core accretion rate self-consistently. Accretion occurs from a feeding 
zone with a width depending on the planet’s mass. As the core grows, the 
planetesimal surface density decreases. 
!
• full structure equations with realistic EOS and opacities 
!

•real evolutionary sequences (i.e. they include the TdS/dt term) 
!
They however still assume that: 
!

•the protoplanetary disk giving the boundary conditions is static in time. 
•the formation occurs in situ (no migration).



Jupiter: entire “life”
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Summary on giant planet formation
•The core accretion model is a relatively mature model that can 

reproduce many observational constraints, in particular in the context of 
population synthesis models. 

• It however relies on a rapid accretion of a massive core which is not fully 
understood. 

•Active areas of research regarding the core accretion model are the 
effects of the opacity and of the composition of the envelope, and the 
consequences of hydrodynamic, multidimensional models instead of 
classical quasi-static 1D model. 

• In the gravitational instability model, many fundamental mechanism are 
in contrast not yet understood. 

•There is currently no consensus whether this model leads to the 
formation of gas giant planets. If yes, then they are probably massive 
and found at large orbital distances like the HR 8799 planets.
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3. Orbital migration



Orbital migration 
Last lecture: giant planets should form in a region outside the iceline, i.e. at 
~3-5 AU. Solar System: Giant planets at such distances and further out:  
good confirmation of this theory.
The detection of the first extrasolar planet by Mayor and Queloz in 1995, which 
was a giant planet at an orbital distance of just 0.05 AU was therefore for many 
a major surprise.

ApJ, 241, 425 (October 1, 1980)

Ironically, migration was 
discovered 15 years before 
the first exoplanet by 
theoretical considerations.

It let to the revision of the 
standard picture of planet 
formation (~in situ formation) 
!
Insight that orbital migration 
represents a key aspect of 
the theory which must be 
included.



Basic mechanism
Planet interacts gravitationally with the disk => density waves 
!
Density waves react back on the planet => torque Γtot 
!
Torque change the planet’s angular momentum Jp

dJ
p

dt
= �

tot

From which we obtain the migration rate:

Depending upon the sign of the torque the migration can proceed 
inwards or outward. 

with Jp = Mprpvk = Mpr
2
p⌦k = Mp

p
GM?rp

dr
p

dt
= 2r

p

�
tot

J
p



Basic types

Simulations by P. Armitage

surface density

!
- for low mass planets the density waves propagate through the disk 
- for larger mass planets, a gap opens in the disk

Type I migration
migration mode of low mass planets, no gap

Type II migration
migration mode of large mass planets, with gap

The movie shows the transition by 
ramping up the planet mass.



Basic mechanism of angular momentum exchange: 
•heading density enhancement => pulls the planet forward => outward migration  
•trailing density enhancement=> pulls the planet backwards => inward migration

forward pull: Outwards migration

backward pull: Inwards migration

inertial frame rotating frame

Simulations by C. Baruteau

Inertial and rotating frame



3.1 Impulse approximation



Impulse approximation
A simple approach (Lin & Papaloizou 1979) to calculate the torque. 
•gravitational interaction between planet and gas parcel flowing past 
•neglect that in a corrotating frame (around the sun)  
•two body approximation

For a single encounter, the deflection angle, ϕ is related to the
initial impact parameter, b, by

F⊥ = m
dv⊥
dt

=⇒ v⊥ =

∫ ∞

−∞
dv⊥ =

1

m

∫ ∞

−∞
F⊥dt (30.03)

From the geometry of the encounter
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Also, from the Born approximation
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Letting x = s/b
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2GM

vb
·
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The force perpendicular to the initial velocity 
means for 

Stellar Relaxation Time

[Chandrasekhar 1960, Principles of Stellar Dynamics, Chap II]
[Ostriker & Davidson 1968, Ap.J., 151, 679]

Do stars ever collide? Are interactions between stars (as opposed
to the general system potential) important? We can answer this
question by calculating the time it takes for a star’s orbit to
be “significantly” perturbed by individual encounters with other
stars. To calculate this relaxation time, let’s first define the word
“significant”. One way of doing this is through total energy:
when does the kinetic energy exchanged during stellar encounters
equal the star’s original kinetic energy, i.e.,

TE =⇒
∑

(∆E)2 = E (30.01)

But for simplicity, we’ll define “significant” as the time it takes
a star to lose all memory of its original trajectory, i.e.,

TD =⇒
∑

sin2 ϕ = 1 (30.02)

We then assume that a) all deflections are two-body encounters,
b) each encounter is statistically independent, and c) close en-
counters are insignificant compared to long-range encounters, so
that during each encounter, |∆E| ≪ E. Under these assump-
tions, all the deflections are small (sinϕ ≪ 1), and we can use
the Born approximation, where (vinit ≈ vfinal ≈ v).
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Derive first the expression for the gravitational 
deflection angle � for the case of a body of mass m, 
initial relative velocity v and an impact parameter b 
encountering a big body with mass M.

Stellar Relaxation Time

[Chandrasekhar 1960, Principles of Stellar Dynamics, Chap II]
[Ostriker & Davidson 1968, Ap.J., 151, 679]

Do stars ever collide? Are interactions between stars (as opposed
to the general system potential) important? We can answer this
question by calculating the time it takes for a star’s orbit to
be “significantly” perturbed by individual encounters with other
stars. To calculate this relaxation time, let’s first define the word
“significant”. One way of doing this is through total energy:
when does the kinetic energy exchanged during stellar encounters
equal the star’s original kinetic energy, i.e.,

TE =⇒
∑

(∆E)2 = E (30.01)

But for simplicity, we’ll define “significant” as the time it takes
a star to lose all memory of its original trajectory, i.e.,

TD =⇒
∑

sin2 ϕ = 1 (30.02)

We then assume that a) all deflections are two-body encounters,
b) each encounter is statistically independent, and c) close en-
counters are insignificant compared to long-range encounters, so
that during each encounter, |∆E| ≪ E. Under these assump-
tions, all the deflections are small (sinϕ ≪ 1), and we can use
the Born approximation, where (vinit ≈ vfinal ≈ v).
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be “significantly” perturbed by individual encounters with other
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Do stars ever collide? Are interactions between stars (as opposed
to the general system potential) important? We can answer this
question by calculating the time it takes for a star’s orbit to
be “significantly” perturbed by individual encounters with other
stars. To calculate this relaxation time, let’s first define the word
“significant”. One way of doing this is through total energy:
when does the kinetic energy exchanged during stellar encounters
equal the star’s original kinetic energy, i.e.,

TE =⇒
∑

(∆E)2 = E (30.01)

But for simplicity, we’ll define “significant” as the time it takes
a star to lose all memory of its original trajectory, i.e.,

TD =⇒
∑

sin2 ϕ = 1 (30.02)

We then assume that a) all deflections are two-body encounters,
b) each encounter is statistically independent, and c) close en-
counters are insignificant compared to long-range encounters, so
that during each encounter, |∆E| ≪ E. Under these assump-
tions, all the deflections are small (sinϕ ≪ 1), and we can use
the Born approximation, where (vinit ≈ vfinal ≈ v).
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Impulse approximation II

Since from geometry

For a single encounter, the deflection angle, ϕ is related to the
initial impact parameter, b, by
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allows to evaluate the integral to find traversal velocity

For small angles, we can use the Born approximation, where for the total 
velocity vinit ≈ vfinal ≈ v 
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For the (small) angle we have  Since for small deflections, tanϕ ≈ ϕ = v⊥/v

ϕ =
2GM

v2b
(30.09)

Now, let’s sum this over all possible collisions. The number of
collisions that take place in time dt depends on the impact pa-
rameter, the distance a star travels in dt, and the density of stars
in the stellar system, N , i.e.,

Ncoll = (2πb db) · (vdt) · N (30.10)

So, to deflect the star by 90◦,

∑

sin2 ϕ ≈
∑

ϕ2 = 1 =

∫ TD

0

∫ bmax

bmin

(2πb db)(vdt) N · ϕ2
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2GM

v2b

)2
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8πG2M2N

v3
TD
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As for the limits on the log quantity, we can use the obvious fact
that no deflection angle can be greater than π. Thus
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from geometry thus we find
 for the angle



Impulse approximation III
Use our results form the previous page to calculate the momentum exchange.

The change in the perpendicular component of the velocity is thus 
given as before by: 

|�v?| =
2GMp

b�v

This velocity change occurs radially: no angular momentum change. But 
two body encounter: conserves energy: change in the perpendicular 
component also implies a change in the parallel component       .

Associate velocity v of the body with mass m with the velocity difference 
between a gas parcel and the planet and define:                       

�v (�v = vgas � vp)

From the conservation of energy (and Pythagoras) we have
�v2 = |�v�|2 + (�v � �v||)

2

Evaluating this, and neglecting the quadratic term in         (small deflection)  

�v|| '
1

2�v

✓
2GMp

b�v

◆2

Change in parallel velocity



Impulse approximation IV
Change of angular momentum of the gas parcel associated with        
must be balanced by the opposite change of angular momentum of the 
planet. For a planet with a semi-major axis a, this implies a change in 
specific angular momentum: 

Lecture 6: Planet migration

In this final lecture we will look at the early evolution of planets and planetary systems. Once
they have formed planets interact gravitationally with the gas disc, and also with any remaining
planetesimals and other planets. These processes can lead to substantial changes in the dynamical
state of the system, and if we wish to compare to observations of evolved planetary systems we
must consider their effects.

1 Migration in gaseous discs

We first consider the interaction between a planet and its parent gas disc. The simplest way
to model planet migration is via the so-called impulse approximation. We assume that a small
parcel of gas initially moves on an unperturbed circular orbit, and treat the interaction as a two-
body problem to calculate the impulsive deflection during a close encounter with the planet. This
approach, first used in this context by Lin & Papaloizou (1979), glosses over many details, but it
gives the correct scalings and has been shown to provide a reasonably accurate (factor of a few)
approximation to more detailed calculations.

If a fluid element in the disc approaches a planet of mass Mp with relative velocity ∆v and
impact parameter b, its change in the velocity perpendicular to the direction of motion is

|δv⊥| =
2GMp

b∆v
. (1)

We then take advantage of the conservative nature of gravitational encounters to relate this to the
parallel velocity by conservation of kinetic energy thus

∆v2 = |δv⊥|2 + (∆v − δv||)
2 . (2)

In the limit of small deflection angles (i.e., δv|| ≪ ∆v), this gives

∆v2 ≃
(

2GMp

b∆v

)2

+ ∆v2
(

1−
2δv||
∆v

)

, (3)

which reduces to

δv|| ≃
2G2M2

p

b2∆v3
. (4)

If the orbital radius (semi-major axis) of the planet is a, then the change in specific angular
momentum of the fluid element is

∆j = a.δv|| =
2G2M2

pa

b2∆v3
. (5)

In a Keplerian system, the direction of the angular momentum exchange can be readily understood.
Gas exterior to the planet’s orbit feel a positive torque from the planet (as the planet has a higher
orbital speed), so this exchange of angular momentum pushes the gas outwards and the planet
inwards. Gas interior to the planet feels the opposite effect: it is pushes inwards by the planetary
torque, and causes the planet to migrate outwards. The net direction of migration thus depends
on the difference between the interior and exterior torques.

The total torque on the planet can be estimated by integrating Equation 5 over the entire disc.
If we consider an annulus of gas exterior to the planet with surface density Σ and width db, the
mass in the annulus is dm = 2πΣadb. If the gas in this annulus has orbital frequency Ω and the
planet has Ωp, the timescale over which all of the gas in the annulus will encounter the planet is

∆t =
2π

|Ω − Ωp|
. (6)
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The net direction of migration thus depends on the difference between the 
interior and exterior torque.

Gas exterior to the planet: overtaken by the planet=>angular 
momentum loss for the planet => gain for the gas. 
!
Gas interior to the planet: overtakes the planet=>angular momentum 
gain for the planet => loss for the gas. 
!

Net differential torque



To compute this net torque, integrate the single particle torque over all 
gas in the disk. Consider a small annulus outside the orbit of the planet 
at distance a. The mass in the interval (b;b+db) is dm ⇡ 2�a�db

Impulse approximation V

The net torque will be the sum of all the torques (inside and outside) and 
will depend on the exact structure of the disk.
If the planet has an orbital frequency        and the gas has     , the gas 
parcel suffers impulses separated by

�t =
2�

|⇥� ⇥p|

|�� �p| ⇥
����
d�p

da

���� b ⇥
3�p

2a
b

For small displacements b<<a, a first order expansion of the angular 
frequencies yields: 

The total temporal change of the angular momentum of the planet must 
be the integral over the angular momentum transfer of all interacting gas 
parcels per unit time: 

For small displacements b ≪ a we can approximate |Ω− Ωp| as

|Ω− Ωp| ≃
∣

∣

∣

∣

dΩp

da

∣

∣

∣

∣

b =
3Ωp

2a
b . (7)

We can therefore calculate the total torque on the planet as

dJ

dt
= −

∫

∆j.dm

∆t
. (8)

We eliminate the ∆v term by assuming near-Keplerian orbits, so that ∆v ≃ |Ω′
p|ab = (3/2)Ωpb.

Substituting (and cancelling a lot of terms), we find that

dJ

dt
= −

∫ ∞

0

8G2M2
pΣa

9Ω2
pb

4
db . (9)

This integral diverges, but if we specify some minimum impact parameter bmin > 0 we find

dJ

dt
= −

8G2M2
pΣa

27Ω2
pb

3
min

. (10)

In practice, values of bmin between the Hill radius (for low-mass planets) and the disc scale-height
(for massive planets) give a torque which agrees approximately with that computed from more
detailed analyses.

This simplified analysis captures many important features of the planet-disc interaction. We
see that the the strength of the torque scales with the surface density Σ, so a more massive disc
causes more rapid planet migration. We also see that dJ/dt scales with the square of the planet’s
mass. The planet’s angular momentum scales linearly with Mp, so we conclude that more massive
planets migrate more rapidly if the disc conditions are the same. Note that the second part of
this sentence is crucial. As we will see shortly, massive planets can modify the local disc structure
significantly (affecting both Σ and bmin), so it is not generally true that more massive planets
migrate more rapidly.

1.1 Resonant Torques

The impulse approximation yields approximately the right answer in this case, but it is clear
that this analysis has skated over the more subtle details of the problem. A full analysis instead
considers the evolution of linear perturbations in a fluid disc, and was first applied to planet-disc
interactions by Goldreich & Tremaine (1979, 1980). The first step is to decompose the perturbation
to the Keplerian potential due to the planet into Fourier modes (∝ exp[im(φ − Ωpt)]). The next
step is to compute the response of the disc to there perturbations, and from this it is possible to
calculate the torque on the planet. This procedure is decidedly non-trivial (as can be seen from
the original papers), and subsequent work has refined the first results significantly.

The key result, however, is easy to state: the total angular momentum exchange between disc
and planet can be expressed as the sum of the torques exerted at discrete resonances in the disc.
These resonances correspond to the points in the disc where the planet excites waves, which almost
invariably take the form of spiral density waves. Despite being not obvious from a mathematical
perspective, this result intuitively makes sense: the torques at non-resonant locations in the disc
do not “interfere” constructively, and consequently cancel out when averaged over the orbit1.

In general, resonances occur when a characteristic frequency of the planet matches a frequency
in the disc. In a circular disc there are two important types of resonance: co-rotation and

1The non-trivial part of the problem essentially comes down to showing that the non-resonant torques cancel
exactly, rather than just approximately.
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Eliminate         by assuming Keplerian orbits and a first order expansion �v
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Impulse approximation VI
Substituting yields
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These resonances correspond to the points in the disc where the planet excites waves, which almost
invariably take the form of spiral density waves. Despite being not obvious from a mathematical
perspective, this result intuitively makes sense: the torques at non-resonant locations in the disc
do not “interfere” constructively, and consequently cancel out when averaged over the orbit1.

In general, resonances occur when a characteristic frequency of the planet matches a frequency
in the disc. In a circular disc there are two important types of resonance: co-rotation and

1The non-trivial part of the problem essentially comes down to showing that the non-resonant torques cancel
exactly, rather than just approximately.
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Values of bmin are between the Hill radius (for low-mass planets) and the 
disc scale-height H (for massive planets). Then, one finds a torque which 
agrees approximately with that obtained from more detailed analyses:

- the torque scales with the square of the planet mass
- the torque scales with the surface density of the disk

- the migration timescale varies with planet mass as �mig =
J

dJ/dt
/ 1

Mp
For fixed disk conditions, more massive planets migrate faster.

This integral diverges at the inner boundary, but if we specify some minimum 
impact parameter bmin>0, we easily find (for a constant surface density)

For small displacements b ≪ a we can approximate |Ω− Ωp| as

|Ω− Ωp| ≃
∣

∣

∣

∣

dΩp

da

∣

∣

∣

∣

b =
3Ωp

2a
b . (7)

We can therefore calculate the total torque on the planet as

dJ

dt
= −

∫

∆j.dm

∆t
. (8)

We eliminate the ∆v term by assuming near-Keplerian orbits, so that ∆v ≃ |Ω′
p|ab = (3/2)Ωpb.

Substituting (and cancelling a lot of terms), we find that

dJ

dt
= −

∫ ∞

0

8G2M2
pΣa

9Ω2
pb

4
db . (9)

This integral diverges, but if we specify some minimum impact parameter bmin > 0 we find

dJ

dt
= −

8G2M2
pΣa

27Ω2
pb

3
min

. (10)

In practice, values of bmin between the Hill radius (for low-mass planets) and the disc scale-height
(for massive planets) give a torque which agrees approximately with that computed from more
detailed analyses.

This simplified analysis captures many important features of the planet-disc interaction. We
see that the the strength of the torque scales with the surface density Σ, so a more massive disc
causes more rapid planet migration. We also see that dJ/dt scales with the square of the planet’s
mass. The planet’s angular momentum scales linearly with Mp, so we conclude that more massive
planets migrate more rapidly if the disc conditions are the same. Note that the second part of
this sentence is crucial. As we will see shortly, massive planets can modify the local disc structure
significantly (affecting both Σ and bmin), so it is not generally true that more massive planets
migrate more rapidly.

1.1 Resonant Torques

The impulse approximation yields approximately the right answer in this case, but it is clear
that this analysis has skated over the more subtle details of the problem. A full analysis instead
considers the evolution of linear perturbations in a fluid disc, and was first applied to planet-disc
interactions by Goldreich & Tremaine (1979, 1980). The first step is to decompose the perturbation
to the Keplerian potential due to the planet into Fourier modes (∝ exp[im(φ − Ωpt)]). The next
step is to compute the response of the disc to there perturbations, and from this it is possible to
calculate the torque on the planet. This procedure is decidedly non-trivial (as can be seen from
the original papers), and subsequent work has refined the first results significantly.

The key result, however, is easy to state: the total angular momentum exchange between disc
and planet can be expressed as the sum of the torques exerted at discrete resonances in the disc.
These resonances correspond to the points in the disc where the planet excites waves, which almost
invariably take the form of spiral density waves. Despite being not obvious from a mathematical
perspective, this result intuitively makes sense: the torques at non-resonant locations in the disc
do not “interfere” constructively, and consequently cancel out when averaged over the orbit1.

In general, resonances occur when a characteristic frequency of the planet matches a frequency
in the disc. In a circular disc there are two important types of resonance: co-rotation and

1The non-trivial part of the problem essentially comes down to showing that the non-resonant torques cancel
exactly, rather than just approximately.
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3.2 Gap formation



Gap opening
Gas inside the planet looses angular momentum and moves inwards while 
gas outside gains angular momentum and moves outwards. For this 
mechanism to result in the opening of a gap, two conditions have to be met.

Condition I  (thermal condition):  
!
Hills sphere of a planet >= the disk scale height. Otherwise the disc 
accretes past the planet away from the disc midplane.

rH = rp

✓
Mp

3M⇤

◆1/3

� H

Which implies a mass ratio planet/star of:

q =
Mp

M⇤
� 3

✓
H

r

◆3

p

= 3h3
p

Typically the disk aspect ratio is h≈0.05 and q ≥ 1.25·10-4 corresponding to 
M > 0.13 MJupiter.



Condition II (viscous condition): 

!
Viscous effect must not be able to close the gap. This can be expressed by 
the condition: ⌧

close

� ⌧
open

In terms of torque, this condition is written
✓
dJ

dt

◆

LR

�
✓
dJ

dt

◆

visc

Or recalling previous expressions: 
8

27

G2M2
p rp�

9⇥2
pb

3
min

� 3⇥��r2p⇥p

Typically h≈0.05,                  so that q ≥ 2.39·10-3 corresponding to  M > 2.5 MJupiter↵ = 10�2

In usual conditions, it is the viscosity criterion that determines the opening of a gap.

Gap opening II

q � 243⇥

8
�h2

With ⇥ = �csH, and bmin = RH we get: 



3.3 Migration timescales



Type II migration
Planet massive enough to open gap: gas is pushed away from the planet 
and hence the torques diminish. The planet is kept in the middle of the gap 
!
!
!

Static disk: the planet is also static, no migration.  
Real disk: evolving on the viscous timescale. Also the planet’s orbit is 
evolving on this timescale. The reality is more complex: flux across gap

•if it were to be closer to the inner edge, it would gain angular momentum, 
and it would migrate back outwards, while  

• if it were closer to the outer edge, it would lose angular moment and 
migrate back inwards



Type II migration

This migration timescale is independent of the mass of the planet and 
only depends upon the mass of the star and the characteristics of the 
disk. This simple picture is valid only if the planet is not too massive. One 
therefore distinguishes two regimes:

Disk dominated type II (B>>1):

Planet dominated type II (B<<1):

Clearly, in the planet dominated regime, migration is slower.

where we have used the fact that the viscosity is given by                      
and the sound speed is approximated by 

⇥ = �csH
cs = H�p

⇤II =
r2p
⇥

=
r2p

�csH
=

1

�

⇣rp
H

⌘2
��1

p

Type II migration timescale

Typical numbers: α=10-2: ~105 yrs, α=10-3: ~106 yrs



disk lifetimes

Planets seem to migrate so 
fast that they should all fall 
into the star within the 
lifetime of the disk (unless 
they grow extremely rapid)!

simple linear theory for 
isothermal disks cannot be 
the final word!Ward 1997

Migration timescales: too fast type I
The migration rates predicted for type I migration in a locally isothermal disk 
can be extremely short: ~104 yrs

These very short migration 
timescales represent another 
major issue in modern planet 
formation theory.



In such turbulent disks, it is found that for low mass planets, Type I 
migration is no longer effective due to large fluctuations in the torque. 
The fluctuations in the torque created by the perturbations in the 
density can be larger than the mean torque expected for standard 
Type I migration in a laminar disk.

1) Random walk migration in turbulent disks

Migration of M=10 M⊕ planets. The 
planets undergo migration similar to a 
random walk for the duration of the 
simulation, with no clear tendency for the 
planets to migrate inward or outward. 

Updated type I migration rates



Non-isothermal type I migration

Crida et al. 2006; Baruteau & Masset 2008; Casoli & Masset 2009; Pardekooper et al. 2010; Baruteau & Lin 2010

Kley & Crida 2009

outward
inward

Thermodynamics of the disk is essential 

2) Migration in non-isothermal disk

An important (and not 
justified) assumption in the 
derivation of the classical 
type I torque: the gas around 
the planet acts isothermally. 
!
Radiation hydrodynamic 
simulations treating correctly 
the energy transport: below 
a threshold mass, migration 
is outwards (different gas 
density distribution around 
the planet).



Type I convergence zones

38 Migration tracks

Figure 4.2: The top plot shows the torque factor Cadia(a) for the adiabatic regime at
di�erent times indicated in the plot for the same disc as before. ERROR IN THE Y
AXIS LABEL. The lower panel illustrates again regions of outward and inward migration.
Green symbols show negative and red positive values of Cadia. Additionally, the location
of the two important convergence zones are shown.

Semimajor axis [AU]

T
im

e 
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] inout

inout

!
!
The location of the convergence 
zone itself moves inward on a 
viscous timescale.This means 
that despite being in the type I 
regime, the planets will move 
inwards on a much slower 
viscous timescale, as in type II.

It is tempting to think that these zones are the places to grow massive 
planets, as they might concentrate many growing protoplanets.

Dittkrist et al. in prep

Important consequence of non-
isothermal migration: 
convergence zones (zero torque 
locations in which planets get 
trapped).



Summary on migration

•Disk migration is a natural consequence of the gravitational interaction of 
the planets with the gas disk 

•Computing the migration rate is a complex problem as one is interested 
in the small difference between positive and negative torques 

•Migration timescales can be very short, affecting strongly the 
architecture of planetary systems 

•Migration is generally directed inwards, but recent developments shows 
a more complex behavior with special planet traps 

•Migration is an area of active ongoing research 
•There are also other mechanism that can change the semimajor axis of a 

planet, namely planet/planet scattering or Kozai interaction with distant 
perturbers combined with tidal circularization 

•The discovery of planets in mean motion resonances or of close-in very 
young companions are strong indications that disk migration happened 



!

Lecture III 
Planetary population synthesis 



1. 
Observational motivation

Orbital distance (AU)
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Winn & Fabrycky 2014



Population synthesis as a tool

Statistical approach rather than comparing individual systems  

• need to compute the formation of many planets 

• the approach and the physics must be simplified  

• but it must capture the key effects 
!

!

Population synthesis is a tool to: 

• use all known exoplanets to constrain planet formation models  

• test the implications of new theoretical concepts 

• provide a link between theory and observations

One learns a lot even if a synthetic population does not match 
the observed one!

⇒ builds on all detailed studies of specific physical mechanism, 

combining them into a global formation & evolution model 
• depends on / reflects the general progress of planet formation theory



2. 
Population synthesis 
principle



The essence of the method

specialized	
 models

population	
synthesis

extraction process

Ida & Lin 2004-2013	
Thomes et al. 2008	
Mordasini et al. 2009-2015	
Miguel et al. 2008, 2009	
Forgan & Rice 2013	
Alibert et al. 2011, 2013	
Coleman & Nelson 2014	
….	

- while you get the essence, you	
have lost the subtlety of the original

- but what is left is a concentrate	
  of many effects

- and lets you see the big 
picture (hopefully)

- you need specialized models to 	
  know what is important



 Formation model
Initial Conditions: Probability  
distributions & parameters	

Disk gas mass	
Disk dust mass	
Disk lifetime

From 	
observations

Draw and compute 
synthetic  

planet population

Apply observational 
detection bias

Model solution 
found! MatchNo match: improve, 

change parameters	

Observable sub-population	
- Distribution of semi-major axis	
- Distribution of masses	
- Distributions of luminosities	
- Distribution of radii

Comparison:

Predictions 
(going back to the full 
synthetic population)Observed 

population 

Population synthesis work flow

Link disk properties ⇒ planet properties



3. 
Input physics: global 
models

Pollack et al. 1996



 Formation model
Initial Conditions: Probability  
distributions & parameters	

Disk gas mass	
Disk dust mass	
Disk lifetime

From 	
observations

Draw and compute 
synthetic  

planet population

Apply observational 
detection bias

Model solution 
found! MatchNo match: improve, 

change parameters	

Observable sub-population	
- Distribution of semi-major axis	
- Distribution of masses	
- Fraction of hot/cold Jupiters	
- Distribution of radii

Comparison:

Predictions 
(going back to the full 
synthetic population)Observed 

population 

Population synthesis work flow

Link disk properties ⇒ planet properties



CA global formation & evolution model

Alibert, Mordasini, Benz 2004; Alibert et al. 2005, Mordasini et al. 2012, Alibert et al. 2013, Sheng & Mordasini 2014,…

Core struct.

2

8

4Infalling

Atmosphere

6

10

N-body

Solid diskRad. str.Vert. str.

Envelope Solid accretion

Migration
9

Atmos. escape

ṀXY

R
Pollack et al. 1996

1

3

7

5

Interactions

Planet

Disk



4. 
Probability distributions



 Formation model
Initial Conditions: Probability  
distributions & parameters	

Disk gas mass	
Disk dust mass	
Disk lifetime

From 	
observations

Draw and compute 
synthetic  

planet population

Apply observational 
detection bias

Model solution 
found! MatchNo match: improve, 

change parameters	

Observable sub-population	
- Distribution of semi-major axis	
- Distribution of masses	
- Fraction of hot/cold Jupiters	
- Distribution of radii

Comparison:

Predictions 
(going back to the full 
synthetic population)Observed 

population 

Population synthesis work flow

Link disk properties ⇒ planet properties



3 Monte Carlo initial conditions
!
!
IR excess  
!
vary lifetime via 
photoevaporation 
rate

3 Disk lifetime

Haisch et al. 2001, Fedele et al. 2010

NGC 2024

Trapezium

IC 348

NGC 2362

2 Disk (gas) masses
Thermal continuum emission from cold dust at mm 
and submm wavelengths (Ophiuchus nebula).

1 Metallicity  
assume same in star 
and disk
Stellar [Fe/H] from spectroscopy. 
Gaussian  distribution for [Fe/H] 
with µ ~0.0, σ~ 0.2. (e.g. Santos 
et al. 2003)

N. C. Santos et al.: Statistical properties of exoplanets 367

Fig. 2. Left: metallicity distribution of stars with planets making part of the CORALIE planet search sample (shaded histogram) compared
with the same distribution for the about 1000 non binary stars in the CORALIE volume-limited sample (see text for more details). Right: the
percentage of stars belonging to the CORALIE search sample that have been discovered to harbor planetary mass companions plotted as a
function of the metallicity. The vertical axis represents the percentage of planet hosts with respect to the total CORALIE sample.

suggests that we may be looking at the approximate limit on the
metallicity of the stars in the solar neighborhood.

Here we have repeated the analysis presented in Paper II,
but using only the planet host stars included in the well de-
fined CORALIE sample7. This sub-sample has a total of 41 ob-
jects, ∼60% of them having planets discovered in the con-
text of the CORALIE survey itself. Here we have included all
stars known to have companions with minimum masses lower
than ∼18 MJup; changing this limit to e.g. 10 MJup does not
change any of the results presented below.

The fact that planets seem to orbit the most metal-rich stars
in the solar neighborhood has led some groups to build planet
search samples based on the high metal content of their host
stars. Examples of these are the stars BD-10 3166 (Butler et al.
2000), HD 4203 (Vogt et al. 2002), and HD 73526, HD 76700,
HD 30177, and HD 2039 (Tinney et al. 2002). Although clearly
increasing the planet detection rate, these kind of metallicity bi-
ased samples completely spoil any statistical study. Using only
stars being surveyed for planets in the context of the CORALIE
survey (none of these 6 stars is included), a survey that has
never used the metallicity as a favoring quantity for looking for
planets, has thus the advantage of minimizing this bias.

As we can see from Fig. 2 (left panel), the metallicity distri-
bution for the planet host stars included in the CORALIE sam-
ple does show an increasing trend with [Fe/H]. In the figure,
the empty histogram represents the [Fe/H] distribution for a
large volume limited sample of stars included in the CORALIE

7 These are: HD 142, HD 1237, HD 4208, HD 6434, HD 13445,
HD 16141, HD 17051, HD 19994, HD 22049, HD 23079, HD 28185,
HD 39091, HD 52265, HD 75289, HD 82943, HD 83443, HD 92788,
HD 108147, HD 114386, HD 114729, HD 114783, HD 121504,
HD 130322, HD 134987, HD 141937, HD 147513, HD 160691,
HD 162020, HD 168443, HD 168746, HD 169830, HD 179949,
HD 192263, HD 196050, HD 202206, HD 210277, HD 213240,
HD 216435, HD 216437, HD 217107, and HD 222582.

survey (Udry et al. 2000). The metallicities for this latter sam-
ple were computed from a precise calibration of the CORALIE
Cross-Correlation Function (see Santos et al. 2002a); since the
calibrators used were the stars presented in Paper I, Paper II,
and this paper, the final results are in the very same scale.

The knowledge of the metallicity distribution for stars in
the solar neighborhood (and included in the CORALIE sam-
ple) permits us to determine the percentage of planet host stars
per metallicity bin. The result is seen in Fig. 2 (right panel). As
we can perfectly see, the probability of finding a planet host is
a strong function of its metallicity. This result confirms former
analysis done in Paper II and by Reid (2002). For example, here
we can see that about 7% of the stars in the CORALIE sample
having metallicity between 0.3 and 0.4 dex have been discov-
ered to harbor a planet. On the other hand, less than 1% of the
stars having solar metallicity seem to have a planet. This result
is thus probably telling us that the probability of forming a giant
planet, or at least a planet of the kind we are finding now, de-
pends strongly on the metallicity of the gas that gave origin to
the star and planetary system. This might be simple explained if
we consider that the higher the metallicity (i.e. dust density of
the disk) the higher might be the probability of forming a core
(and an higher mass core) before the disk dissipates (Pollack
et al. 1996; Kokubo & Ida 2002).

Although it is unwise to draw any strong conclusions based
on only one point, it is worth noticing that our own Sun is in the
“metal-poor” tail of the planet host [Fe/H] distribution. Other
stars having very long period systems (more similar to the Solar
System case) do also present an iron abundance above solar. If
we take all stars having companions with periods longer than
1000 days and eccentricities lower than 0.3 we obtain an aver-
age <[Fe/H]> of +0.21. A lower (but still high) value of +0.12
is achieved if we do not introduce any eccentricity limit into
this sample. We caution, however, that these systems are not
necessarily real Solar System analogs.

Santos et al. 2003

D. Fedele et al.: Accretion Timescale in PMS stars

Table 2. Adopted age, spectral type range, facc and fIRAC (when available) in Figs. 3 and 4.

Cluster Age Sp.T range facc fIRAC Age ref. facc ref. fIRAC ref.
[Myr] [%] [%]

rho Oph 1 K0–M4 50 ± 16 M05 M05
Taurus 1.5 K0–M4 59 ± 9 62 M05 M05 Ha05
NGC 2068/71 2 K1–M5 61 ± 9 70 FM08 FM08 FM08
Cha I 2 K0–M4 44 ± 8 52–64 Lu08 M05 Lu08
IC348 2.5 K0–M4 33 ± 6 47 L06 M05 L06
NGC 6231 3 K0–M3 15 ± 5 S07 this work
σ Ori 3 K4–M5 30 ± 17 35 C08 this work He07
Upper Sco 5 K0–M4 7 ± 2 19 C06 M05 C06
NGC 2362 5 K1–M4 5 ± 5 19 D07 D07 D07
NGC 6531 7.5 K4–M4 8 ± 5 P01 this work
η Cha 8 K4–M4 27 ± 19 50 S09 JA06 S09
TWA 8 K3–M5 6 ± 6 D06 JA06
NGC 2169 9 K5–M6 0+3 JE07 JE07
25 Ori 10 K2–M5 6 ± 2 B07 B07
NGC 7160 10 K0–M1 2 ± 2 4 SA06 SA05 SA06
ASCC 58 10 K0–M5 0+5 K05 this work
β Pic 12 K6–M4 0+13 ZS04 JA06
NGC 2353 12 K0–M4 0+6 K05 this work
Collinder 65 25 K0–M5 0+7 K05 this work
Tuc-Hor 27 K1–M3 0+8 ZS04 JA06
NGC 6664 46 K0–M1 0+4 S82 this work

References. Schmidt (1982, S82), Park et al. (2001, P01), Hartmann et al. (2005, Ha05), Kharchenko et al. (2005, K05), Mohanty et al.
(2005, M05), Sicilia-Aguilar et al. (2005, SA05), Carpenter et al. (2006, C06), Lada et al. (2006, L06), Jayawardhana et al. (2006, JA06),
Sicilia-Aguilar et al. (2006, SA06), Dahm & Hillenbrand (2007, D07), Briceño et al. (2007, B07), Jeffries et al. (2007, JE07), Hernández et al.
(2007, He07), Sana et al. (2007, S07), Caballero (2008, C08), Flaherty & Muzerolle (2008, FM08), Luhman et al. (2008, L08), Sicilia-Aguilar
et al. (2009, S09), Zuckerman & Song (2004, ZS04).

Fig. 3. Accreting stars-frequency as a function of age. New data (based
on the VIMOS survey) are shown as (red) dots, literature data as (green)
squares. Colored version is available in the electronic form.

He I 5876 Å in emission (EW = −0.5 Å, –0.6 Å respectively).
The evidence of large Hα10% together with the He I emission is
most likely due to ongoing mass accretion, and these two stars
are classified as accreting stars. We estimate a fraction of accret-
ing stars in NGC 6231 of 11/75 or 15 (±5%). We warn the reader
that this might be a lower limit to the actual fraction of accret-
ing stars; further investigation is needed to disentagle the nature
(accretion vs binarity/rapid rotation) of the systems with large
Hα10% (>300 km s−1) but low EW [Hα].

Fig. 4. facc (dots) versus fIRAC (squares) and exponential fit for facc (dot-
ted line) and for fIRAC (dashed line).

NGC 6531

We identified 26 cluster members in NGC 6531 based on the
presence of Hα emission and presence of Li. 13 other sources
show presence of Li 6708 Å, but have Hα in absorption. As in
the case of NGC 6231, these might be cluster members with no
or a reduced chromospheric activity. We measured the EW of Li
6708 Å of these 13 sources and compared them with the typi-
cal EW of the 26 stars in NGC 6531 showing also Hα emission
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(a) (b) (c) (d) (e)

Figure 3. Derived distributions of the disk structure parameters for the composite sample (combining the results presented here and in Paper I). From left to right
are the disk masses (Md), radial surface density gradients (γ ), characteristic radii (Rc), scale-heights at 100 AU (H100), and the radial scale-height gradients (ψ). The
contributions of the four disks with diminished millimeter emission in their central regions are hatched.

Figure 4. Comparison of the data with the best-fit disk structure models. The left panels show the SMA continuum image, corresponding model image, and imaged
residuals (data-model). Contours are drawn at the same 3σ intervals in each panel. Cross hairs mark the disk centers and major axis position angle; their relative
lengths represent the disk inclination. The right panels show the broadband SEDs and deprojected visibility profiles, with best-fit models overlaid in red. The input
stellar photospheres are shown as blue dashed curves.
(A color version of this figure is available in the online journal.)
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Andrews et al. 2010

Draw initial conditions in 
Monte Carlo way to calculate 
synthetic population



5. 
Detection biases & 
Statistical comparison

OHP 1.93 m - 51 Peg b discovery 



 Formation model
Initial Conditions: Probability  
distributions & parameters	

Disk gas mass	
Disk dust mass	
Disk lifetime

From 	
observations

Draw and compute 
synthetic  

planet population

Apply observational 
detection bias

Model solution 
found! MatchNo match: improve, 

change parameters	

Observable sub-population	
- Distribution of semi-major axis	
- Distribution of masses	
- Fraction of hot/cold Jupiters	
- Distribution of radii

Comparison:

Predictions 
(going back to the full 
synthetic population)Observed 

population 

Population synthesis work flow

Link disk properties ⇒ planet properties



Radial velocity detection bias

Includes effects of	
- Orbital eccentricity	
- Stellar metallicity, rotation rate, and jitter	
- Actual measurement schedule

Naef et al. 2004

Instrumental precisionElodie ~10 m/s  HARPS ~1 m/s

Mayor et al. 2011

822 stars

Get sub-population of observable synthetic planets 



Planetary population synthesis 
PART II 

!

Results and perspectives



Toy population synthesis model
Freely available toy population synthesis model 
!
Open source, fast running time, well documented
http://nexsci.caltech.edu/workshop/2015/#handson

Ida & Lin 2004 This model

http://nexsci.caltech.edu/workshop/2015/#handson


Formation tracks: Bern model
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Semi-major axis (AU)

Rocky

Icy

core com
position

‣ 10 Embryos/disk 
‣ Mini = 0.01 M⊕ 

‣ Full N-body 

‣ Mstar = 1 M⊙ 

‣ Migration (Type I 
and II) 

‣ α = 2 x 10-3

Alibert et al. 2013

-Mostly compact systems 
-Low eccentricities  



DACE

Online demonstration

https://dace.unige.ch/

https://dace.unige.ch/


3. 
Comparisons with RV

Howard et al.  2012



 Formation model
Initial Conditions: Probability  
distributions & parameters	

Disk gas mass	
Disk dust mass	
Disk lifetime

From 	
observations

Draw and compute 
synthetic  

planet population

Apply observational 
detection bias

Model solution 
found! No match: improve, 

change parameters	

Observable sub-population	
- Distribution of semi-major axis	
- Distribution of masses	
- Fraction of hot/cold Jupiters	
- Distribution of radii

Comparison:

Predictions 
(going back to the full 
synthetic population)Observed 

population 

Population synthesis work flow

Link disk properties ⇒ planet properties



Planetary initial mass function
10 embryos/disk (full N-body), start mass: 0.01 MEarth 
Mstar=1M⊙, full non-isothermal type I, alpha= 2 x10-3 
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• Complex structure, dominated by low mass planets 
• Consistent w. non-detection of Jupiters around ~90% stars. 

Type Mass (M % 	
(of M>1 M

(Super)-Earth < 7 61

Neptunian 7-30 17

Intermediate 30-100 3

Jovian 100-1000 13

Super-Jupiter > 1000 5

Benz et al. 2014

P-IMF



Comparison with observations: high M
Blue lines: Observational comparison sample at 10 m/s 
Black lines: Detectable synthetic sub-population at 10 m/s

4 Marcy, Butler, Fischer, Vogt, Wright, Tinney and Jones

The target list also includes 120 M dwarfs, located mostly within 10 pc with
declination north of −30 deg.87) For the late-type K and M dwarfs, we restricted
our selection to stars brighter than V = 11. All slowly rotating stars are surveyed
with a Doppler precision of 3 m s−1 to provide a uniform sensitivity to planets. Thus
far, our Lick, Keck, and Anglo-Australian surveys have revealed 104 planets orbiting
88 stars, including 12 multi-planet systems. The orbital elements and masses of these
exoplanets are regularly updated at: http://exoplanets.org .

§3. Observed properties of exoplanets

We derive the statistical properties of planets from the 1330 FGKM target stars
for which we have uniform precision of 3 m s−1 and at least 6 years duration of
observations. Detected exoplanets have minimum masses, Msin i, between 6 MEarth

and ∼15 MJup, with an upper mass limit corresponding to the (vanishing) tail of
the mass distribution. The planet mass distribution is shown in Fig. 1 and follows
a power law, dN/dM ∝ M−1.05 54), 55) affected very little by the unknown sin i.41)

The paucity of companions with Msin i greater than 12 MJup confirms the presence
of a “brown dwarf desert”54) for companions with orbital periods up to a decade.

 Planet Mass Distribution
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Fig. 1. The histogram of 104 planet masses (Msin i) found in the uniform 3 m s−1 Doppler survey
of 1330 stars at Lick, Keck, and the AAT telescopes. The bin size is 0.5 MJup. The distribution
of planet masses rises as M−1.05 from 10 MJup down to Saturn masses, with incompleteness at
lower masses.

Marcy et al. 2005

Conclusion: core accretion ~reproduces giant planet mass function



Observations Synthetic 

Mayor et al. 2011 
Howard et al. 2010

Typical for core accretion. Constraint on Mcrit  & gas accretion rate
Sudden increase

Many low-mass planet - building blocks for terrestrial planets

Benz et al. 2014
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Correct for obs. bias

Conclusions:  
-core accretion reproduces break in mass function 

-Start of rapid gas accretion ~30 Mearth 
-many low-mass planets

Comparison with observations: low M



Constraints in the P-IMF: transition

Once Mcrit is reached, rapid gas accretion begins.

Depending on                       P-IMF slope can be positive, flat, negative. 
Controlled by: local gas mass, viscous transport, angular momentum…

C. Mordasini et al.: The HARPS search for southern extra-solar planets. XXIII. 9

not be explained by an observational bias. This is because the
lower mass Neptunian and Super-Earth planets are more di⇥-
cult to detect than intermediate mass planets. It is interesting to
note that a relative paucity of intermediate mass planets is also
seen in transit searches (Hartman et al. 2009).

Several physical e�ects influence the runaway gas accretion
rate (Lubow et al. 1999; Ida& Lin 2004; Mordasini et al. 2009a;
Lissauer et al. 2009): Thermal pressure in the planetary enve-
lope at lower planetary masses, the global evolution (dissipation)
of the protoplanetary disk which reduces the amount of matter
available for the planet, the rate of mass transport due to viscos-
ity within the disk towards the planet as well as local phenomena
like the formation of a gap, or the exhaustion of the gas directly
in the gravitational reach of the planet.

While several planetary population synthesis simulations
built on the core accretion paradigm share the common feature
that they predict some depletion of intermediate mass planets
relative to other planet types, they attribute in their underly-
ing formation models (cf. Alibert et al. 2005) distinct impor-
tance to the various e�ects mentioned above, so that there are
clear di�erences in the degree of depletion: from an almost
complete absence of such planets between 0.1-1 AU (Miguel
& Brunini 2008, 2009), over a significant depletion (Ida & Lin
2004, 2008a, 2008b) to a rather moderate one (about a factor 2-3
relative to Jovian planets) in Mordasini et al. (2009a, 2009b).

The reason for the di�erence between the latter two mod-
els was discussed in details in Mordasini et al. (2009a). SAYYY
IT!! Here we illustrate this in Fig. 7 that shows the theoretically
obtained mass distribution from Neptunian to Jovian planets us-
ing two di�erent assumptions for the gas accretion rate in run-
away. Other settings are similar as in Mordasini et al. (2009a).
Only planets with a period less than 5 years are shown which
are detectable for a RV instrument of 1 m/s precision, similar as
HARPS. In one simulation, the gas accretion rate of the planet
is limited by the accretion rate in the disk only if the mass of
the planet is larger than the local gas isolation mass, calculated
with the undisturbed gas surface density. This is similar to the
criterion used by Ida & Lin (2004). The underlying assumption
is here that gas already inside the planet’s Hill sphere can be
accreted independently of the inflow from further out. This in-
flow is in turn limited by the disk viscosity. In the other case,
the planetary gas accretion rate is limited by the accretion rate
in the disk in any case. The underlying assumption is here that
due to gap formation, the mass directly available to the planet
is in fact small, in particular smaller than the gas isolation mass
as calculated above, as (beginning) gap formation reduces the
gas surface density around the planet. The plot shows that this
setting has an important e�ect on the frequency of intermediate
mass planets, which are in the first model clearly less frequent
that in the second one, as the maximal accretion rates occurring
in the first simulation are larger than in the second.

Bodies with masses of up to several ten Earth masses can
in principle also form after the dissipation of the gas disk if
enough solids are available in situ, which is in particular the case
at larger distances beyond the ice line. Such bodies would then
be essentially gas free. At the rather small orbital distances of
HD 85390 b and HD 103197 b (1.5 and 0.25 AU, respectively),
for realistic solid disk masses, such a formation scenario seems
however unlikely: The two planets are larger than what can be
formed by this process at their current distances (Ida & Lin
2004), considering the host star metallicities.

The two intermediate mass planets were therefore very prob-
ably formed while the gas disk was still present. In this case,
the mass of a planet core cannot grow to arbitrarily large val-

Fig. 7. Theoretical mass distribution from Neptunian to Jovian
mass planets obtained from a population synthesis calcula-
tion. The solid line shows a population where the planetary
gas accretion rate was only limited by the disk accretion rate
if the planet has a mass larger than the local gas isolation mass.
For the dotted line, the limit was used in any case. Both dis-
tributions were normalized to unity at the first bin at about 20
Earth masses. ADD OBSERVED DISTRIBUTION, WITH THE
SCALING FOR SMALL MASSES (AS SHOWN BY MICHEL
IN SB)? STRESS DIRECTNESS AND CLEARNESS OF THE
STATISTICAL CONSTRAINT. NEW!

ues without runaway gas accretion setting in. The masses of
HD 85390 b and HD 103197 b are larger than the mass at which
this process starts (although not by a large factor, and the spe-
cific value depends on e.g. the unknown core accretion rate,
see Papaloizou & Terquem 1999). The two planets are therefore
probably examples where gas runaway started, but only shortly
before the gas disk disappeared, so that only low quantities of
gas were still available to accrete, and that the gas accretion
rate was low. Indeed consist synthetic planets (Mordasini et
al. 2009b) that are situated at a similar position in the mass-
distance plane as HD 85390 b (M sin i = 45.3M�) of typically
about 40% hydrogen and helium in mass. The scatter around
this value is quite large, reflecting di�erent disk properties, and
ranges from still clearly solid dominated planets (⇥ 10% gas) to
small gas giants (⇥ 70% gas). For the less massive HD 103197 b
(M sin i = 31.8M�) the typical value is about 30%, with a scat-
ter around this value of about 15%. We conclude that these two
exoplanets have thus probably not only a mass, but also a com-
position between Neptunian and Jovian planets.

From this discussion we see that it is important to observa-
tionally infer relative frequencies of planetary types between 20
to 100 M� to better understand the runaway phase. This will fi-
nally enable us to construct better formation models. In the ideal
case, the planets should be transiting their host star, but be lo-
cated still so far away from it that evaporation can be ruled out,
so that the primordial composition can be studied.

Acknowledgements. We thank the di�erent observers from other HARPS GTO
subprograms who have also measured the stars discussed here. We thank Xavier
Dumusque for helpful input. We thank the Swiss National Research Foundation

Mcrit

small (fast accr.)

large

S. Ida

If                       << 1, a  
“planetary desert” can form. 

Mcrit: depends on luminosity, opacity and gas composition ~5-15 ME

Conclusion: gas accretion rate in disk-limited phase is rather low



P-IMF: impact of disk properties 

!
•higher number of giants 
•but not more massive  
•Threshold mass (Mcrit)

• correlation disk mass 
giant planet mass

Long living disks: giants 
• more numerous and 
• higher mass 

-Correlation with MD

Metallicity Disk mass Disk lifetime

Mordasini et al. 2012	



Giant planet frequency

!
•Trend as observation, but 
weaker dependency 
•Argument in favor of core 
accretion

•4 x (Mdisk/0.017 M⊙)1.2 %

Metallicity Disk mass Disk lifetime

Blue: Observation (Fischer & Valenti 2005) 
Red: Observation (Udry & Santos 2007) 
Black: Observable synthetic planets

[Fe/H]

•Approximately linear
•8 x (Tdisk/3 Myr)2 %
•Approximately quadratic

Ida & Lin 2005	

Conclusions:core accretion 
~reproduces the metallicity effect



Type I migration rate
Full isothermal type I migration: 
cannot form Jupiters any more 
!
Triggered many dedicated 
studies on type I. 
!
New non-isothermal models 
now included in global models. 
!
Interaction of global models 
and specialized studies.

Conclusion: isothermal 
approximation insufficient

Ida & Lin 2008



N-body imprints

S.Pfy↵er et al.: Theoretical models of planetary system formation

Figure 23. Same as Fig. 20 for the population with reduced eccentricity damping (RD).

Figure 24. Same as Fig. 20 for the population without eccentricity damping (ND).

Figure 25. Comparison of the period ratios after 100Myr for di↵erent populations of planets with
K ? 10ms�1. The black solid line denotes the distribution for observed exoplanets, the red dashed
line for the reference population (R), the blue dot-dashed line for the population with 20 intial
embryo seeds (E20) and the cyan dotted line for the population with 5 initial embryo seeds (E5).

Article number, page 23 of 29

too many in MMR

Initial conditions of scattering calculations rarely found 
(several closely spaced giant planets). External perturbations?

compact, low ecc. systems

Pfyfffer et al. 2015

Rasio & Ford 1996, Juric & Tremaine 2008, Chatterjee et al. 2008, Malmberg & Davies (2009)

Conclusions: -model cannot reproduce eccentricities 
-too many MMR



4. 
Comparions with transits

Mass- 
radius 
relation



Mass-radius relation
Direct imaging

Microlensing

Radial velocity	
& Transits
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•M-R: First geophys. 
characterisation: 
 rocky, icy, gaseous 
!
•General trends 
•Large diversity 
•Inflated giant planets 
•Empty regions

!
•Constraints for formation 
theory beyond the a-M: 
!
Transition solid-gas dominated 
planets: efficiency of H/He accretion 
& loss: opacity in protoplanetary 
atmosphere, atmospheric escape

•Understandable with 
theoretical models? 

Mass M [Earth masses] •Must combine 
formation and evolution



Formation of the M-R relationship
Mordasini et al. 2012, Molliere & Mordasini 2012

!
Rapid collapse at  
~0.2 MJ when Z≈ 0.5 
(runaway gas accretion) 
!
After disk dispersal (T>10 
Myrs), slow contraction. 

Fraction Z of solids  
(rest H/He)

Orange: Z ≤ 1%!
Red: 1 < Z ≤ 5% !
Green: 5 < Z ≤ 20%  !

Yellow: 80 < Z ≤ 95% !
Brown: 95 < Z ≤ 99% !
Black: Z > 99%

Blue: 20 < Z ≤ 40% !
Cyan: 40 < Z ≤ 60% !
Magenta: 60 < Z ≤ 80%

R≈RH=a(M/3M✷)1/3

Collapse

Degeneracy

D-fusion

Mstar=1 Msun. a>0.1AU. Non-isothermal type I. cold accretion. 1 embryo/disk, no special inflation mechanisms, no evap. 
!

Characteristic S shape
Conclusion: core accretion recovers basic shape of M-R



Formation of the M-R relationship
Mordasini et al. 2012, Molliere & Mordasini 2012

!
Rapid collapse at  
~0.2 MJ when Z≈ 0.5 
(runaway gas accretion) 
!
After disk dispersal (T>10 
Myrs), slow contraction. 

Fraction Z of solids  
(rest H/He)

Orange: Z ≤ 1%!
Red: 1 < Z ≤ 5% !
Green: 5 < Z ≤ 20%  !

Yellow: 80 < Z ≤ 95% !
Brown: 95 < Z ≤ 99% !
Black: Z > 99%
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Mstar=1 Msun. a>0.1AU. Non-isothermal type I. cold accretion. 1 embryo/disk, no special inflation mechanisms, no evap. 
!

Characteristic S shape
Conclusion: core accretion recovers basic shape of M-R
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!
Rapid collapse at  
~0.2 MJ when Z≈ 0.5 
(runaway gas accretion) 
!
After disk dispersal (T>10 
Myrs), slow contraction. 
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Mstar=1 Msun. a>0.1AU. Non-isothermal type I. cold accretion. 1 embryo/disk, no special inflation mechanisms, no evap. 
!

Characteristic S shape
Conclusion: core accretion recovers basic shape of M-R



!
•Peak at lowest radii. High detection 
rate of Kepler.  
!
•Second peak at ~ 1 RJ ➱ Giant 
planets have all approx. the same 
radius independent of mass 
(degenerate interiors) 
!

Planetary radius distribution

20 C. Mordasini et al.: Characterization of exoplanets from their formation II

Table 3. Derived fraction of heavy elements in planets with a >
0.1 AU. The value for the synthetic planet lying closest in the
M � R plane is given and the domain covered by the error bars.
An age of 5 Gyrs is assumed. The planets are approximatively
listed in increasing mass.

Name closest Z Z domain
Kepler-11f ⇠0.95 0.90-0.97
Kepler-11d 0.88 0.84-0.94
Kepler-20d ⇠0.96 >0.89
Kepler-11e ⇠0.78 0.76-0.79
Kepler-10c ⇠0.99 >0.95
Kepler-11c 0.98 >0.85
Uranus 0.88 -
Neptune 0.90 -
Kepler-18d ⇠0.50 0.43-0.52
Kepler-35b ⇠0.37 0.28-0.37
Kepler-9c 0.25 0.24-0.30
Kepler-34b 0.35 0.32-0.39
Kepler-9b 0.30 0.16-0.36
Saturn 0.27 -
Kepler-16b ⇠0.41 0.40-0.44
CoRoT-9b ⇠0.11 0.09-0.11
Jupiter 0.10 -
CoRoT-10b 0.17 0.08-0.18
HD17156b ⇠0.08 0.04-0.11
HD80606b 0.09 0.07-0.10
KOI-423 - (<0.05)

Fig. 13. Predicted radius distribution for planets with primordial
H2/He atmospheres and a radius R > 2R�. Synthetic planets at
all semimajor axes have been included. The age of the popula-
tion is 5 Gyrs.

The distribution has a very characteristic, bimodal shape: A
global maximum at the smallest radii, and a second lower local
maximum at a radius of about one Jovian radius. The increase to-
wards small radii is simply due to the increase of the underlying
mass distribution towards small masses, and that with decreasing

Table 4. Radius distribution for planets with a primordial H2/He
atmosphere and R > 2R�. The first two columns are the radius
bins, while the remaining three columns are the fraction of plan-
ets in the bin at ages of 1, 5, and 10 Gyrs.

R/R� R/RX 1 Gyr 5 Gyrs 10 Gyrs
2.11 0.19 0.134 0.219 0.202
2.31 0.21 0.157 0.137 0.134
2.54 0.23 0.134 0.113 0.135
2.78 0.25 0.101 0.105 0.088
3.05 0.27 0.082 0.077 0.060
3.34 0.30 0.078 0.055 0.053
3.66 0.33 0.059 0.047 0.052
4.02 0.36 0.050 0.037 0.039
4.41 0.39 0.037 0.026 0.027
4.83 0.43 0.023 0.019 0.022
5.30 0.47 0.017 0.016 0.019
5.81 0.52 0.014 0.017 0.020
6.37 0.57 0.014 0.013 0.013
6.98 0.62 0.009 0.009 0.010
7.66 0.68 0.008 0.007 0.008
8.39 0.75 0.007 0.009 0.011
9.20 0.82 0.008 0.009 0.012
10.09 0.90 0.009 0.018 0.022
11.07 0.99 0.022 0.041 0.056
12.13 1.08 0.039 0.024 0.017
13.30 1.19 0.000 0.000 0.000

mass, the fraction of heavy elements increases (Sect. ???). This
means that low-mass planets also have small radii. Note that it
is well possible that the increase towards small radii may even
stronger in reality than predicted by the model. This is due to
the fact that we only include (relatively large) primordial H2/He
envelopes and an initial embryo mass of 0.6 M�.

The second maximum at about a Jovian radius has a funda-
mental reason, too. It is due to the fact that in the giant planet
domain (M & 100M�), planets all have approximately the same
radius, independent of their mass. This is due to the funda-
mental property of matter to become degenerate for such mas-
sive objects, rendering the matter increasingly compressible (e.g.
Chabrier et al. ????). This makes that more massive planets do
not have larger radii, in contrast to the terrestrial or Neptunian
mass domain. This property of the EOS makes that a large num-
ber of planets covering a large range of masses all fall into the
same radius bin (radii between 0.9 and 1.1 RX), causing the max-
imum in the distribution. The local minimum of the distribution
occurs at a radius of 7 to 8 R�. As can been deduced from Fig.
???, this corresponds to masses between ⇠ 20 to ⇠ 200M�, with
a typical mass of ⇠ 70M�. This corresponds to the mass domain
of the “planetary desert” where several planet formation mod-
els (e.g. Ida & Lin ????, Mordasini et al ????) predict a lower
abundance of planets. This additional e↵ect makes the second
maximum even more prominent.

The figure shows the radius distribution at the specific age of
5 Gyrs. In reality, stars of a given sample will have a distribution
of ages. The evolution of the radii at late time (t & 1 Gyr) is,
however, very slow. We have verified that the distribution of the
radii in an age range between 1 to 10 Gyr indeed only changes
very slightly. As expected, there is still a slow contraction occur-
ring, which makes for instance that at an age of 1 Gyr instead of
5 Gyrs, the local maximum in the giant planet domain is shifted
by one bin to the left (i.e. by about 0.1 RX). But the general shape
remains very similar, as can also been seen from Table ????.

GJ12
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b

Mstar=1 Msun. a>0.1AU. Non-isothermal Type I. Cold accretion. 1 embryo/disk, no special inflation mechanisms, no evap. 
!
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Observed radius distribution

•No peak seen in Kepler data (all candidates)
•Recently confirmed planets: clear peak in Kepler data 
•Beware of biases / false positives / contaminated samples

Conclusions: degeneracy (EOS) is understood & radius distribution is similar

www.exoplanets.org http://exoplanetarchive.ipac.caltech.edu

http://www.exoplanets.org
http://exoplanetarchive.ipac.caltech.edu


Mass-radius relationship

Grain free (fopa=0) fopa=0.003 ISM (fopa=1)

too large 
too much H/He

radii similar 
as observed

too small 
too little H/He

Observational constraints from M-R relation on microphysical grain models.

0.1<a/AU<1

Compare synthetic and observed M-R for three grain opacity reduction factors

Conclusion: low opacities in protoplanetary atmospheres during formation



3. 
Perspectives

Mass- 
radius 
relation



 Formation model
Initial Conditions: Probability  
distributions & parameters	

Disk gas mass	
Disk dust mass	
Disk lifetime

From 	
observations

Draw and compute 
synthetic  

planet population

Apply observational 
detection bias

Model solution 
found! MatchNo match: improve, 

change parameters	

Observable sub-population	
- Distribution of semi-major axis	
- Distribution of masses	
- Fraction of hot/cold Jupiters	
- Distribution of radii

Comparison:

Predictions 
(going back to the full 
synthetic population)Observed 

population 

Population synthesis work flow

Link disk properties ⇒ planet properties



a-M does not 
change much. 
(a>0.06 AU)

Close-in, low-mass 
loose the envelope. 
!
Most of the ac@on 
early on.

Output of core accr. 
popula@on synthesis 
!
Thermodynamic 
evolu@on (cooling & 
contrac@on) in @me 
w. atmos. escape

Black: Bare 
rocky cores

Jin, Mordasini et al. 2013

1) Adding a new dimension: time



Mstar=1 Msun Isothermal Type I rate x 0.1. Cold accretion. 1 embryo/disk, no special inflation mechanisms. 

Black: Bare 
rocky cores

Artifact of using Mmin=1 MEarth

-Contrac@on 
-Evapora@on  
-Empty valley 
below 1-2 REarth

a-R does  
change

1) Adding a new dimension: time



0.1 Gyr 
1 Gyr 

10 Gyr

Radius distribu@on as 
func@on of @me: 
!
Key constraint for 
planet forma@on and 
evolu@on theory

Not (yet) directly  
observed

2

and
• PLATO will determine the ages of thousands of hosts star. Can see temporal 

evolution of the entire population.

1) Adding a new dimension: time



Search for the 
transition in the  
M-rho-t space 
!
Giants: hotter less 
dense: bloating 
!
Low mass: hotter 
denser: evaporation 
! 1  10  100  1000  10000
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exoplanets.org 
cf. Rauer et al. 2013

Earth like

Pure ice
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1) Adding a new dimension: time
1 Msun star. No bloating mechanism.

• Solid planets ~don’t change, those with H/He do. 



Theoretical mass - density diagram

A: Bare rocky cores 
B: Bare icy cores 
C: Evaporation valley 
D: Low-mass planets with H/He 

E: Evaporation forbidden zone 
F: Transition to gas dominated planets 
G: Giant planets



2) Linking formation and spectra
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2) Linking formation and spectra

iceline

Case 1: “dry planet” Disk migration

Result: aligned Hot Jupiter with chemical imprint of accretion of hot gas and rocky planetesimals

Case 2: “wet planet” Kozai and tidal circularization

Result: potentially misaligned Hot Jupiter with chemical imprint of accretion of cold gas and icy 
planetesimals from beyond iceline only



Formation phase

Dry Jupiter

Assumption: accreted gas volatile free 
(might not true if disk midplane MRI dead)

Disk migration to inner disk edge during 
disk lifetime.

Wet Saturn
Scattering/Kozai migration to 0.04 AU after 
disk dissipation.

Assumption: no accretion during this process

Rock to ice fraction: 0.46 
(Anders & Grevesse 1989)



Final bulk composition

21

56

176

8 21

7

17 55

7

Solid core Hydrogen Helium Refractories Volatiles

Dry Jupiter (261 ME) Wet Saturn (107 ME)

Mass/MEarth:
The envelope of the “wet Saturn” is more enriched since a) more solids further away from the 
star (larger feeding zone, ices) b) lower H/He mass c) icy planetesimal more fragile



Evolution: p-T structure
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“Dry Jupiter”

-Interior cools, atmosphere “fixed” by stellar irradiation.  
-Atmospheric composition may decouple from interior: but mixing strong from GCMs

convective 
radiative First structure 

immediately 
after end of 
formation

Structure 
after 5 Gyrs

Deep 
radiative 
zone.

Core-
envelope 
boundary

Interior

Atmosphere

cf. Guillot & Showman 2002



Chemistry model

Volatiles:

61  nb% Water H2O 
12  nb% Carbon monoxide CO 

19  nb% Carbon dioxide CO2 
2.4 nb% Methane CH4 
6.1 nb% Ammonia NH3

From observed abundances in protoplanetary disks (Pontoppidan et al. 2005). 
Similar in comets (Bockelee-Morvan et al. 2004) and protostellar cloud cores. 

Specify what “refractory” or “ice” is in terms of atomic composition.

Assume uniform mixing of atmosphere and envelope. No temporal evolution. 
Heavy atoms might settle to the deep interior (Fortney et al. 2008, Spiegel et al. 2009)

Refractories:
33 wt% Iron Fe 
44 wt% Silicate Perovskite MgSiO3 
22 wt% Carbon C

From local ISM dust composition (Nuth et al. 1998). Assume no evaporation and re-
condensation during solar nebula formation (Gaidos et al. 2015).



Resulting abundances

Here: formation location, migration mode → C/O ratio 
•  EGPs formed outside water iceline: O-rich 
•  EGPs formed inside water iceline: 

• O - rich  (carbon poor rocky planetesimals - likely) 
• C - rich  (ISM-like carbon-rich grains - unlikely) 

New constraints from spectra



Conclusions

Conclusions for Hot Jupiters 
1) Planetesimal enrichment 

is dominant (M<2-10 MJ) 
!
2) Hot Jupiters have water  

dominated atmospheres 
with C/O<1. 



D-burning 
LD≥ 5% Lint 
LD≥ 25% Lint 
LD≥ 50% Lint

Dot: Lacc >Lint

Mordasini et al. in prep	

cold gas accretion
L

L�
⇡ 7⇥ 10�4 M

MJup

L

L�
⇡ 4⇥ 10�6

✓
M

MJup

◆2

Accreting sequence: 
!
!Evolving sequence 

Quanz et al. 2013, 2015, Reggiani et al. 2014	

L ⇡ Lint / M2

L ⇡ Lacc / M

!
•L almost as Hot Start. 
•Intrinsic scatter in M-L 
•Core mass effect: 
enrichment relative to star 

HD 169142 b

HD 100546 b

51 Eri b

β Pic b

Burrows & Liebert 1993, Marleau & Cumming 2014

3) Observing planet formation as it happens



t=3	Myr,	cold	accre/on
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HD	142527B	

LkCa	15	b	

from	T	Tauris

Lint+Lacc

RHill
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Pneb 

Lint

LkCa 15b

3) Observing planet formation as it happens



-Specialized population synthesis for Beta Pictoris. 
-Combine constraints from RV and direct imaging. 

Bonnefoy et al. 2013, Mordasini et al. 2014

Beta Pic b can be 
explained with “cold” 
core accretion: 
!
Core mass effect.  
Planets with many 
heavy elements. 
!
Mass: ~11 MJ
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All synthetic planets

Application: Beta Pic b



Beta Pic b: enrichment ?
Beta Pic b: For cold accretion, needs large core masses for observed L and Teff. 

 140

 150

 160

 170

 180

 190

 200

 210

 220

 8  9  10  11  12  13  14  15

H
ea
vy

 e
le
m
en

t m
as
s 
[M

Ea
rt
h]

Total Mass [MJupiter]

Two sigma Teff=1700± 200 K, log(L/Ls)= −3.87 ± 0.16
One sigma Teff=1700± 100 K, log(L/Ls)= −3.87 ± 0.08

All synthetic planets

T=20 Myrs 
8<a/AU<12

Some metals might get mixed back into envelope and atmosphere: 
Enrichment (spectroscopy) 

Total mass:  
~10-12 MJ 
Core mass:  
~150-200 ME

Corresponds to 
~2 to 3 times 
stellar Z, i.e., 
[M/H]=0.3-0.5 



•Population synthesis is a tool to compare theory and 
observation to improve understanding of planet formation 
• use full wealth of observational constraints 
• put detailed models to the test 
• see global statistical consequences 

!

•Observational constraints on many processes 
• solid and gas accretion rate (TKH) 
• grain dynamics 
• orbital migration rate 

!

•See link between disk and planetary properties 
!
•Predict yield of future instruments/space missions 
!
•Continuously evolving models 

• population syntheses depend on progress of formation theory as a whole 
• a lot to do 

Conclusions



Resources

Population synthesis review papers 
 -Benz et al., Protostars & Planets VI,  691, 2014 
 -Mordasini et al., IJA, 201, 2015 
!
!
Freely available toy population synthesis model 
!
!
!
DACE data base

http://nexsci.caltech.edu/workshop/2015/#handson

https://dace.unige.ch/evolution/index

http://nexsci.caltech.edu/workshop/2015/#handson
https://dace.unige.ch/evolution/index

