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OUTLINE
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Lecture 

1. Introduction to Bayesian statistics (comparison with frequentist approach) 

2. Numerical techniques for Bayesian Inference (nested sampling MC) 

3. The DIAMONDS code (overview, working principle, features, efficiency)

Hands-on tutorial 

4. The fitting of the background signal in a red giant star (e.g. granulation) 

5. The fitting of the oscillation modes in a red giant star (p and mixed modes) 

6. The Bayesian peak significance test (using Bayesian model comparison)
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1.- BAYESIAN STATISTICS

Bayesian Probability 

First introduced by Thomas Bayes 1763 

Rediscovered by Harold Jeffreys 1939 

More recently expounded by Edwin T. Jaynes (1983) 

8
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1.- BAYESIAN STATISTICS
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Frequentist Probability 

“The probability of an event is defined as the number of times the event occurs 
over the total number of trials, in the limit of an infinite series of equiprobable 
repetitions.”

Jerzy Neyman, Egon Pearson, Pierre-Simon de Laplace, Adrien-Marie Legendre, Ronald Fisher, Harold 
Jeffreys, Edwin T. Jaynes, Larry Brethorst
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Bayesian Probability 
Opposed to the “frequentist” mindset, probability is conditional to our knowledge 

”Probability is a measure of the degree of belief about a proposition” 
It recovers the frequentist results and is applicable to any proposition in general

A good review of Bayesian statistics can be found in  
1) Roberto Trotta, Bayes in the sky: Bayesian inference and model selection in cosmology, Contemp.Phys.49: 71-104, 2008 
2) Corsaro, E. PhDT, 2013



Frequentist Probability: problems 

Definition is circular 

Requires that the event can be repeated 

The exact definition holds only for an infinite number of repetitions

1.- BAYESIAN STATISTICS
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“The probability of an event is defined as the number of times the 
event occurs over the total number of trials, in the limit of an infinite 
series of equiprobable repetitions.”

The definition of frequentist probability is not adequate.

1) Circular definition

2) Requires that the event is repeatable: many times this is not the case: e.g. an historical event that happens like the beginning of a war

3) The definition implies an infinite number of repetitions, which never happens in reality: asymptotic extrapolations


Example of the coin toss. Suppose we want to see if the coin is properly balanced (e.g. tensor of inertia symmetric about the plane of the coin). Fairness of coin toss

p_Heads = p_Tails = 0.5 
but this has nothing to do with the proper balance of the coin. A skilled coin-tosser can change the output of the toss by imposing the required velocity to flip the coin differently. We therefore have 
a state of knowledge before the toss (e.g. angular momentum, velocity imposed by the coin-tosser), that prevents us from defining a fair toss as that for which p_Heads = 0.5.



Bayesian mindset: the dice example

1.- BAYESIAN STATISTICS
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Taking into account prior information is essential. Suppose that someone is throwing a dice in a room different than the one you are in. Suppose you are then asked the odds that player rolled a 5. 
Your answer will be 1/6, given that there are 6 possible outcomes.


But now suppose that after the player has rolled the dice, someone comes out of his room and says that the outcome is an odd number, but he doesn’t known which one. There are only 3 odd 
numbers in a dice (1,3,5), therefore when you are asked the odds that the player rolled a 5 your answer will be 1/3.



Bayesian mindset: the coin toss example

1.- BAYESIAN STATISTICS
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Example of the coin toss. Suppose we want to see if the coin is properly balanced (e.g. tensor of inertia symmetric about the plane of the coin). Fairness of coin toss

p_Heads = p_Tails = 0.5 
but this has nothing to do with the proper balance of the coin. A skilled coin-tosser can change the output of the toss by imposing the required velocity to flip the coin differently. We therefore have 
a state of knowledge before the toss (e.g. angular momentum, velocity imposed by the coin-tosser), that prevents us from defining a fair toss as that for which p_Heads = 0.5.



Bayesian approach: a success story

1.- BAYESIAN STATISTICS
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Lawrence Stone, Colleen Keller et al. applied Bayesian statistics for the search of the Air France Flight 447, disappeared in the Atlantic Ocean in 2009. She combined 
prior information from last point of contact, speed of currents, weather conditions, and other statistics from previous cases of crashes. The posterior probability map 
obtained by combining different scenarios together allowed to find the airplane, after 2 years of search. The searching area was increasingly reduced by the unsuccessful 
results and the continuous updates on the currents.



Bayes in Astrophysics

1.- BAYESIAN STATISTICS
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Bayes’ Theorem
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k free parameters (parameter vector)

Model to be tested

Dataset (observations)

k-dimensional parameter 
space defined by the free 
parameters
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We can visualize the parameter space containing the solution of a given inference process as a k-dimensional box.



Bayes’ Theorem

1.- BAYESIAN STATISTICS
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Likelihood function

Prior PDF

Posterior PDF
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Cox Axioms 
Sum rule & Product rule

The Bayes theorem arises from a simple combination of logic reasoning axioms, known as Cox axioms. These axioms are the sum rule and the product rule.



Bayes’ Theorem

1.- BAYESIAN STATISTICS
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Likelihood Prior Posterior

∝
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A simple way to visualize the Bayes theorem is to consider the multiplication of a Gaussian likelihood by a flat (uniform) distribution. This will lead to a Gaussian posterior 
distribution, whose normalization volume factor is the Bayesian evidence.



Bayes’ Theorem

1.- BAYESIAN STATISTICS
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Likelihood Prior Posterior

∝
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1.- BAYESIAN STATISTICS
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Likelihood Prior Posterior

∝

Bayes’ Theorem
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1.- BAYESIAN STATISTICS
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Likelihood Prior Posterior

∝

Bayes’ Theorem
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Likelihood functions

For a set of observations distributed as a chi-square with two d.o.f. we use 
the Exponential Likelihood (e.g Fourier spectra, Duvall & Harvey 1986) 

1.- BAYESIAN STATISTICS
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The Gaussian likelihood is the most commonly adopted. It corresponds to a chi-square variable, which is widely adopted in minimization-fitting approaches. The 
exponential likelihood, is instead used for the fitting of power spectra. For computational reasons, likelihood are often used in logarithmic form. This is because they often 
lead to very large (or very small) numbers, since they are defined as a productoria. Switching to the logarithmic scales avoids computational overflow or underflow errors.



Uninformative priors 

Ignorance priors 

Reference priors 

Jeffreys’ priors 

Informative priors 

Uniform priors 

Gaussian priors 

Super-Gaussian priors

Priors PDFs

1.- BAYESIAN STATISTICS
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Reference priors maximize divergence from posterior to prior to produce least informative priors.


Eg. Temperature at noon tomorrow.

Gaussian prior using mean value as the temperature of today at noon and as variance the day-to-day variation measured.


Jeffreys’ priors are also very useful. They reflect a state of ignorance about the order of magnitude of a given parameter, which often can be the case when performing inferences where 
no clear a priori information is available. The strength of Jeffreys’ priors is that one can easily convert a Jeffreys’ prior for a parameter into an uniform prior for the logarithm of the 
parameter (variable change). This allows for fast and handy inclusions of priors in the statistical inference.



Weak data information and informative priors lead to prior-dominated posterior

The role of priors

1.- BAYESIAN STATISTICS
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A prior-dominated posterior is essentially depending upon our initial choice on the parameters of the model. This means that the data available are not sufficiently 
stringent to allow for constraining the free parameters of a model. As a result, by changing priors, and models too, the result will change thus leading to an unreliable 
condition to draw conclusion.



Strong data information and informative priors lead to data-dominated posterior

The role of priors

1.- BAYESIAN STATISTICS
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When the data available are very informative, as it is often the case with space-based photometric observations (e.g. NASA Kepler), then even a different choice of priors 
can still lead to the same result. This condition is ideal to fully exploit the potential of the dataset and to allow comparing and testing different proposed models.



Statistical Inference

The statistical inference of a dataset is divided in two problems: 

Parameter Estimation 
Allows to obtain the estimates of all the free parameters and the 
corresponding error bars 

Model comparison 
Provides a way to select the best model to represent the observations 
among different possible ones 

1.- BAYESIAN STATISTICS
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Frequentist Parameter Estimation

1.- BAYESIAN STATISTICS
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k-dimensional parameter space  

The likelihood as function of k parameters 

Estimators are obtained from the likelihood only. No prior information is taken 
into account. 

k free parameters (parameter vector)
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In the frequentist approach (e.g. chi-square minimization, or MLE) there is no marginalization. We are interested in the global minimum (if chi-square) or maximum (if MLE) 
of the distribution. This corresponds to the modal value of the parameter that is estimated. In this way we are not taking into account the global behavior of the 
distribution, and any degeneracies, asymmetries, or outliers, are not playing any role.

A typical example of minimization problem is that of the linear regression (or linear fitting).



k-dimensional parameter space  

The posterior PDF is a function of k parameters 

To obtain the PDF of a single parameter we can marginalize the posterior PDF

Bayesian Parameter Estimation

1.- BAYESIAN STATISTICS
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Marginal PDF

Mean 
Mode  
Median 
Variance  
Credible Intervals

k free parameters (parameter vector)
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Marginalization is the key of the Bayesian parameter estimation. Marginalizing means integrating all non-interesting information over, so leaving out only the hypothesis 
we are interested to test (i.e. the parameter we want to estimate).

Marginalizing can be thought equivalently as averaging all the available information to incorporate it into the final estimate. This allows taking into account the general 
properties of the distribution (e.g. asymmetry, degeneracies, outliers).



Frequentist Parameter Estimation: Confidence Intervals

1.- BAYESIAN STATISTICS
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Hessian matrix in general if no marginalization (k-dimensional distribution): 
lower limits only!

Confidence Intervals (standard deviation in 1D), give the number of times that the free parameter will fall within the range (mode +/- sigma) in an infinite number of 
repetitions of the same event. 

“You have a XXX probability that by repeating the experiment infinite times, the outcomes will fall in the given interval”



Bayesian Parameter Estimation: Credible Intervals

1.- BAYESIAN STATISTICS
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Credible intervals exist only in reference to a marginalization of the 
k-dimensional distribution. They always refer to a one-dimensional MPD

Credible Intervals give the probability that the free parameter’s estimator lies within  the given interval, just for that particular event and choice of priors (realization).



Estimators (Dispersion indices)

1.- BAYESIAN STATISTICS

Mode (or modal value, the most probable: frequentist) 

Median (divides the probability distribution in two equal parts) 

Mean (the average value of  
the free parameter from the distribution) 

If distribution is symmetric  
mode = median = mean 

If prior PDF is not changing likelihood,  
then Bayesian and frequentist  
approach are formally identical

30

∝
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The mode is a frequentist parameter because it represents the most likely value attained, while median and mean are Bayesian because they take into account the global 
shape of the distribution (asymmetry, degeneracy, outliers, etc.). The median parameter is usually preferred over the mean as it is the most resistant estimator in 
statistics, meaning that it is the least sensitive to strong outliers that may hamper the result.

Many statisticians do however prefer the mean as it is considered a more realistic estimator (it can be influenced by outliers).



Frequentist Model Comparison

1.- BAYESIAN STATISTICS
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The best model is the one that gives the best match with the observations. 
Only fit quality is taken into account 

More complex models favored! Increasing the number of free parameters 
always (or almost) improves the fit 

How to decide where to stop in increasing complexity? Usually when no 
significant improvement in the maximum likelihood is observed, the model is 
considered too complex
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Increasing the number of parameters without a rigorous statistical control can be dangerous. More complex models tend to be favored, meaning that we are biased 
against simplistic explanations. A careful assessing of the fitting quality can however still provide a reasonable outcome, but it is suited only for the experienced user.


Comparing two maximum likelihood values, or two minimum chi-squares, does not mean performing a model comparison! In this way you are not testing any hypothesis 
of the model, and you are not taking into account its complexity. It is only the fit quality that is compared through this process, which is only part of the total information 
that must be considered.



Frequentist Model Comparison
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The best model is the one that gives the best match with the observations. 
Only fit quality is taken into account 

More complex models favored! Increasing the number of free parameters 
always (or almost) improves the fit 

How to decide where to stop in increasing complexity? Usually when no 
significant improvement in the maximum likelihood is observed, the model is 
considered too complex
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Fit quality comparison



Bayesian Model Comparison
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Bayesian Evidence is an dimensionless quantity given as a  
k-dimensional integral over the entire parameter space (does not exist in 
frequentist approach!)
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Bayesian Model Comparison

1.- BAYESIAN STATISTICS
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Bayesian Evidence is key for model comparison problems

∝
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The Bayesian evidence represents the normalization factor of the product of the likelihood distribution by the prior PDF. By default, the likelihood function is not a 
probability density function, hence to get a posterior PDF as an outcome of the Bayes’ theorem we need to normalize the distribution by its total volume.



Bayesian Model Comparison

Bayesian Evidence is weight: simple  
models are preferred (Occam’s razor).  

Direct and effective solution to model  
comparison problems!

1.- BAYESIAN STATISTICS
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Fit quality

N free parameters
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Bayesian model comparison is typically performed following the so-called Jeffreys’ scale of strength for the evidence. However, a real Bayesian approach will never rule 
out a model just because its evidence is below an empirical threshold. All models should me kept during the model comparison, but assigning probabilities to each 
according to the weight of their Bayesian evidence in the total.



Bayesian Model Comparison

Bayesian Evidence is weight: simple  
models are preferred (Occam’s razor).  

Direct and effective solution to model  
comparison problems!

1.- BAYESIAN STATISTICS
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Fit quality

N free parameters
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Jeffreys’ scale
Odds ratio

Bayes factor

Bayesian model comparison is typically performed following the so-called Jeffreys’ scale of strength for the evidence. However, a real Bayesian approach will never rule 
out a model just because its evidence is below an empirical threshold. All models should me kept during the model comparison, but assigning probabilities to each 
according to the weight of their Bayesian evidence in the total.
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Bayesian Statistics: everything is perfect?

Problems: Type 1 - Integration 

Problems: Type 2 - Sampling

38

2.- NESTED SAMPLING MONTE CARLO
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Bayesian Statistics: everything is perfect?

Problems: Type 1 (Integration) 

For high dimensionality (already from k > 3) no more analytical solutions 
to the marginalization problem (hence also the computation of the 
Bayesian Evidence integral) 

Numerical integration is needed but for higher dimensions (k ~ 20) even 
numerical integration is not enough (too approximated and 
computationally demanding)

39

2.- NESTED SAMPLING MONTE CARLO
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Bayesian Statistics: everything is perfect?

Solutions: Type 1 (Integration) 

For relatively low k, (up to k ~ 10) one can split the k-dimensional integral 
into k one-dimensional integrals (e.g. Corsaro PhDT 2013) but method 
requires a grid computation of values (very computationally demanding) 

For higher dimensions thermodynamic integration (annealing)  
Use temperature power of likelihood to gradually move from prior to 
posterior (problems with “phase changes” in likelihood distribution)

40
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Thermodynamic integration suffers from phase changes in likelihood.



Bayesian Statistics: everything is perfect?
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Problems: Type 2 (Sampling) 

Numerical sampling techniques are approximate by definition 

Complex distributions are extremely difficult to sample 

Sampling algorithm can get stuck into a local maximum and never be 
able to explore all the parameter space (e.g. Eggbox distribution) 

Computational time and the number of samples required can become a 
big problem

2.- NESTED SAMPLING MONTE CARLO
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Bayesian Statistics: everything is perfect?

Solutions: Type 2 (Sampling) 

Monte Carlo (MC) methods 

Markov chain Monte Carlo (MCMC) (see Tiago’s lecture) 

Nested sampling Monte Carlo (NSMC)

42
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What is a Monte Carlo?

Enrico Fermi & Stanislaw Ulam in 1940s @ LASL 

No analytical solution available to the experimental problem 

Simulate the experiment: Monte Carlo in homage of the casino 

Characteristics: reconstruct a deterministic problem with a probabilistic 
approach 

Inverse approach to that of standard algorithms: search for probabilistic 
analog to a deterministic problem

43
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Fermi & Ulam were studying neutron collisions at Los Alamos Scientific Laboratory

John von Neumann was in charge of simulating the experiment 



What is a Monte Carlo?

Define a domain of input values 

Generate random inputs in the domain 

Perform a deterministic computation on the 
inputs 

Aggregate the results 

Example: calculate π from a geometrical 
figure

44
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From geometry we know that the area of a square over that of a circle inscribed is pi/4. By sampling enough the two portions, we can easily measure the ratio by 
quantifying the number of sampling points in the two portions.



Markov chain Monte Carlo
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Random Walk (analogy to 
Brownian motion) in the 
parameter space to find 
maximum likelihood value 

Each chain is characterized 
by a step size (length of 
each step) and by the initial 
point 

Accept new point if 
likelihood is better than 
previous one

2.- NESTED SAMPLING MONTE CARLO
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We draw one point per time and proceed by drawing a new point and accepting it only if its likelihood is better than the previous one

We repeat this process with a another chain…and many more, until we sampled enough the parameter space



Markov chain Monte Carlo

46

Problems in sampling distributions with multiple modes (maxima) 

Metropolis-Hastings algorithm (1953-1970) to improve this problem 

Can be adopted up to k ~ 100 but very critical configuration of chains 

Requires hundreds of chains running in parallel and typically on the order 
of millions of sampling points 

Bayesian Evidence is not computed in this process 

Still sensitive to phase changes in likelihood 
(multi-modal distributions)

2.- NESTED SAMPLING MONTE CARLO

IVth Azores International Advanced School in Space Sciences Horta, Faial, Azores | 19 July 2016



Nested sampling Monte Carlo
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Skilling 2004 

Convert evidence in a one-dimensional integral 

Define small portion of prior volume (prior mass) 

2.- NESTED SAMPLING MONTE CARLO
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Recommended reading: 
Skilling, J. 2004, AIP Conf. Proc., 735, 395



Nested sampling Monte Carlo

48

0 1

2.- NESTED SAMPLING MONTE CARLO
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Imagine we have a bi-dimensional parameter space, with a given likelihood distribution. The entire parameter space corresponds to the total prior volume, namely X = 1.



Nested sampling Monte Carlo
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0 1

2.- NESTED SAMPLING MONTE CARLO
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Nested sampling Monte Carlo
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0 1

2.- NESTED SAMPLING MONTE CARLO
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As we shrink our constrain to a higher likelihood value, which corresponds to a smaller iso-likelihood contour, we also reduce the amount of prior volume that we are 
using, hence X is progressively reducing from 1 to 0.



Nested sampling Monte Carlo
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0 < XM < ... < X2 < X1 < 1

2.- NESTED SAMPLING MONTE CARLO
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If we can calculate Li for each Xi then the computation of the Bayesian evidence is straightforward (either rectangular rule, or trapezoidal rule)



Nested sampling algorithm
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How to obtain X? Sample randomly (Monte Carlo) from prior PDF 

Prior is known exactly (we set it a priori!) and can be sampled with high 
accuracy, no matter how many dimensions are considered 

This is obtained by sampling each free parameter according to its own prior 
PDF 

Initially obtain J different samples for each free parameter i.e. J points drawn 
from the total prior distribution 

Each of these points is called live point, and corresponds to a set of 
coordinates in the k-dimensional parameter space

2.- NESTED SAMPLING MONTE CARLO
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Depending on the prior PDF we can draw a new parameter value accordingly. E.g. for a uniform prior the parameter value drawn can randomly lay within the entire range 
allowed with equal probability. If the prior is a Gaussian, we will have an over density of live points corresponding to the maximum of the Gaussian prior distribution.



Nested sampling algorithm

53

2.- NESTED SAMPLING MONTE CARLO
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Each set of coordinates, i.e. live point, corresponds to a likelihood value, hence to a specific prior mass X. The initial sampling of live points will resemble the prior PDF in 
each dimension. If the prior PDF is uniform then the initial sampling will appear uniformly distributed over the entire parameter space, as shown in the box.



Nested sampling algorithm

54

For each live point compute 
the likelihood value 
(straightforward), thus 
obtaining J likelihood values 

Take the worst likelihood 
point Lworst, in this sample 
and remove it from the 
sample 

Store the likelihood value and 
the live point removed 

Draw a new live point that 
satisfies the new constrain  
L > Lworst

X

2.- NESTED SAMPLING MONTE CARLO
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Depending on the prior PDF we can draw a new parameter value accordingly. E.g. for a uniform prior the drawn parameter value can randomly lay within the entire range 
allowed, with equal probability.



Nested sampling algorithm

55
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Each set of coordinates, i.e. live point, corresponds to a likelihood value, hence to a prior mass X. The new live point is drawn within the new, smaller region contained in 
a new iso-likelihood contour at a higher likelihood value. The process is repeated until we reach the maximum of the likelihood distribution.



Nested sampling algorithm: Advantages

56

Distributions sampled efficiently and Bayesian evidence computation very 
accurate (typically requires 100 times less samples than thermodynamic 
integration to reach same accuracy, + error bar) 

Sampling method insensitive to any phase change in likelihood i.e. can 
sample very well multi-modal distributions 

Posterior probability values (required for parameter estimation) are a simple 
by product!

2.- NESTED SAMPLING MONTE CARLO
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Posterior probabilities (not probability densities) come from the definition of the Bayes’ theorem and are an easy by-product of the sampling.



Nested sampling algorithm: Disadvantages

57

Drawing a new live point satisfying the likelihood constraint is difficult 

Requires additional algorithms to improve the sampling efficiency 

Example: ellipsoidal sampling
Mukherjee P. et al. (2006; ApJ, 638, L51) 

2.- NESTED SAMPLING MONTE CARLO

Feroz F., Hobson M. P., Bridges M. (2009; 
MNRAS, 398, 1601)

Feroz F., Hobson M. P. (2008; MNRAS, 384, 449)
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The ellipsoidal sampler is a possible way to afford the problem of sampling efficiently from a prior with the hard constraint of the likelihood value. 
Other techniques involve the use of Markov chain Monte Carlo within the Nested sampling algorithm, or Galilean Monte Carlo which relies on the evaluation of gradients 
(derivatives) in the likelihood distribution to be able to sample higher likelihood regions more efficiently. Ellipsoids are computationally more efficient because they allow 
reducing the volume of prior space from which we sample new points.



Ellipsoidal Sampling (ES)

58

2.- NESTED SAMPLING MONTE CARLO

Find clusters of live points (X-means 
algorithm) 

Construct ellipsoids for each cluster 

Approximate parameter space with 
sets of ellipsoids to reduce prior 
volume to draw from 

We can draw from an ellipsoid very 
rapidly 

Draw a new point until we find one 
with a likelihood better than the 
constraint

IVth Azores International Advanced School in Space Sciences Horta, Faial, Azores | 19 July 2016

The ellipsoidal sampler is based on a cluster algorithm. The cluster algorithm allows identifying groups of points that are clustering around a common center of mass. 
During the nested sampling process, the algorithm checks how many clusters can be found and therefore computes a k-dimensional ellipsoid for each of them.
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2.- NESTED SAMPLING MONTE CARLO

Ellipsoidal Sampling (ES)
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The animation shows an example of how ellipsoids shrink during the progress of the nested iterations to confine the local maxima of the likelihood distribution.



Ellipsoidal Sampling (ES)
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2.- NESTED SAMPLING MONTE CARLO
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Ellipsoidal Sampling (ES)

2.- NESTED SAMPLING MONTE CARLO
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2.- NESTED SAMPLING MONTE CARLO

Ellipsoidal Sampling (ES)
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2.- NESTED SAMPLING MONTE CARLO

Ellipsoidal Sampling (ES)
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What is DIAMONDS?

3.- THE DIAMONDS CODE

65

C++11 code implementing NS with SES and X-means for Bayesian 
inference problems: 

Dataset to fit 

Model to test 

Estimate the free parameters of the model and evaluate the statistical 
weight of the model

high-DImensional And multi-MOdal NesteD Sampling
Corsaro & De Ridder 2014 A&A, 571, 71
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A Bayesian inference problem is happening every time you want to fit a dataset to extract some given information, e.g. constrain (fit) the parameter of a model.



What makes DIAMONDS so appealing?

3.- THE DIAMONDS CODE

66

Basic core public available 

General for any application involving Bayesian Inference 

Bayesian evidence (essential for model comparison problems) is a direct output 

Very powerful in identifying multiple (degenerate) solutions, also in high-
dimensions 

Code implementation is flexible and easy to upgrade 

Different types of prior distributions and likelihood functions already provided 

Overtakes other existing NSMC codes (e.g. MultiNest, GMC, Polychord) 

Attracted already more than 60 users from many world’s institutions and different 
fields of physics
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DIAMONDS Working Scheme

3.- THE DIAMONDS CODE

67

PriorLikelihood

NS algorithm

Main

Model

Results

ES algorithm

File
Functions

Data

Output
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This is the general working flow of the code. You can feed in your own models, likelihoods, and priors. We will come back to that in the hands on computer session.



DIAMONDS Working Scheme

3.- THE DIAMONDS CODE
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PriorLikelihood

NS algorithm

Main

Model

Results

ES algorithm

File
Functions

Data

Output
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DIAMONDS Working Scheme

3.- THE DIAMONDS CODE
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PriorLikelihood

NS algorithm

Main

Model

Results

ES algorithm

File
Functions

Data

Output
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Modules
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3.- THE DIAMONDS CODE

~/Diamonds/source/

Basic abstract class to implement 
new Likelihood functions

Likelihood function that will be used 
for our tutorials

You have different likelihood functions already implemented in the basic package of the code. You can however implement your new ones by considering Likelihood.cpp 
as a source code template. All the header functions prototypes can be found in the folder ~/Diamonds/include/



Modules
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3.- THE DIAMONDS CODE

~/Diamonds/source/

Basic abstract class to implement 
new Model functions

You can implement your fitting model by considering Model.cpp as a source code template. The All the header functions prototypes can be found in the folder ~/
Diamonds/include/



Modules
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3.- THE DIAMONDS CODE

~/Diamonds/source/

Basic abstract class to implement 
new Prior PDFs
Uniform priors will be used during our 
tutorials

You have different prior PDFs already implemented in the basic package of the code. You can however implement your new ones by considering Prior.cpp as a source 
code template. All the header functions prototypes can be found in the folder ~/Diamonds/include/.

Implementing a new prior PDF is generally not an easy task. The prior classes provided will allow a wide applicability to astrophysical problems. Jeffreys’ priors can be 
converted into uniform ones by considering the natural logarithm of the free parameter as the new free parameter.



Modules
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3.- THE DIAMONDS CODE

~/Diamonds/source/

Basic abstract class to implement a 
clustering algorithm

Main Nested Sampler module

The modules related to the sampler are deeply linked to the working principle of the nested sampler. It is not straightforward to replace them with a different algorithm. I 
recommend to keep these modules as they are, and check for general updates in the public GitHub repository of the code. Replacing one of these modules will 
significantly affect the efficiency of the entire code. If you have downloaded the code from the website and you have provided a correct e-mail address then you will be 
notified whenever new releases will be available.



Prior PDFs

3.- THE DIAMONDS CODE

74

3D Uniform

Corsaro & De Ridder 2014 A&A, 571, 71
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Each set of coordinates, i.e. live point, corresponds to a likelihood value, hence to a prior mass X.



Prior PDFs

3.- THE DIAMONDS CODE
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3D Gaussian

Corsaro & De Ridder 2014 A&A, 571, 71
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Prior PDFs

3.- THE DIAMONDS CODE
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1D Super Gaussian

Corsaro & De Ridder 2014 A&A, 571, 71
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Sampling efficiency: Analytical likelihood distributions

3.- THE DIAMONDS CODE
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Himmelblau’s Function
N = 8485 Samples

Corsaro & De Ridder 2014 A&A, 571, 71
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This is an example of a likelihood distribution (with known analytical equation) with four different maxima.



Sampling efficiency: Analytical likelihood distributions

3.- THE DIAMONDS CODE
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N = 8558 Samples
Rosenbrock’s Function
Corsaro & De Ridder 2014 A&A, 571, 71
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The Rosenbrock function has an hidden global maximum inside a pronounced curving degeneracy. 



Sampling efficiency: Analytical likelihood distributions

3.- THE DIAMONDS CODE
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N = 10648 Samples
Rastrigin’s Function
Corsaro & De Ridder 2014 A&A, 571, 71
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The Rastrigin’s function is a nice example of a highly multimodal distribution with a global maximum. The DIAMONDS code proves to be able to quickly recover the 
position of the global maximum of the distribution.



Sampling efficiency: Analytical likelihood distributions

3.- THE DIAMONDS CODE
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N = 3100 Samples

Corsaro & De Ridder 2014 A&A, 571, 71

Gaussian Shells Function
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Gaussian Shells cylinders are very complex distributions to sample because of the very pronounced curving degeneracy, which is also difficult to access due to the 
cylindrical shape of these functions.



Sampling efficiency: Analytical likelihood distributions

3.- THE DIAMONDS CODE
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N = 8207 Samples
Eggbox Function
Corsaro & De Ridder 2014 A&A, 571, 71
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The Eggbox function is a highly complex distribution to be sampled efficiently because it contains a large number of local maxima. Standard MCMC algorithms do fail 
completely to sample it. NSMC can instead be able to provide a reliable sampling with a relatively low number of likelihood evaluations.



Sampling efficiency

3.- THE DIAMONDS CODE
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Arbitrary scale of counts to show what can be gained in terms of number of samples with different algorithms.



SES Enlargement fraction
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3.- THE DIAMONDS CODE

The enlargement fraction of the ellipsoids is a critical parameter in the nested sampling based on SES. It depends on the number of free parameters of the fitting model 
and has to be tuned accordingly in order to be able performing reliable samplings of the posterior probability distribution. The relation show here was calibrated using a 
set of 150 independent computations for the peak bagging analysis discussed later.



Computational efficiency and live points
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3.- THE DIAMONDS CODE

The computational efficiency of the DIAMONDS code is shown in terms of the number of nested iterations required to converge to a solution, and the corresponding 
computational time, in this case referring to a 2.7 GHz single core computation and a dataset accounting for about 2000 data bins.



Termination condition
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Keeton C.R. MNRAS 2012

3.- THE DIAMONDS CODE

A detailed explanation of the meaning of the different numbers that are displayed during the computation can be found in the User Guide Manual of the code.

The live evidence E^live is an estimate of the remaining Bayesian evidence from the last set of live points. This number decreases as we proceed with the nested 
iterations (red curve) and we collect more evidence from the posterior distribution (blue curve). When reaching the termination condition value, the algorithm stops and 
computes the results.

The ratio has not be considered as a Bayes factor, because it is not the ratio of two difference Bayesian evidences (related to two different models). The ratio is only an 
estimate of how much evidence remains to be collected with respect to how much evidence has been collected already. 



HANDS-ON TUTORIAL
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Make sure you have edited the script file multirun using 
your local path and the file localPath.txt as well

• ~/Background/build/

• ~/PeakBagging/build/

/YOUR_LOCAL_PATH_HERE/

Before running the code make sure that you have edited the local path in the two files specified. You need to include the full path from the root, without any ~.
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Solar-like oscillations

89
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4.- FITTING THE BACKGROUND SIGNAL

The Fourier analysis of a time-series will lead to a power spectrum, which plots the power of the signal (amplitude squared) versus the frequency. In general, we use a 
power spectral density (PSD), which is computed as the power divided by the frequency resolution. For photometric observations, a PSD is given in units of ppm^2/
microHz.  
 
In the case of solar-like oscillations, the PSD will display a Gaussian bump arising from a continuum background level.



Fine structure of solar-like oscillations
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4.- FITTING THE BACKGROUND SIGNAL

The fine-structure of the oscillations shows the presence of a comb-like pattern that has a characteristic main frequency separation given as Deltanu, namely the 
frequency separation between two modes of the same angular degree l, but consecutive radial order.



Scaling relations
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4.- FITTING THE BACKGROUND SIGNAL

The scaling relations for mass and radius can be derived from the global asteroseismic parameters nu_max and Deltanu. However, they should be used with care 
because some systematics are present, which can lead to deviations up to 15% in mass, and 5% in radius.



Fine structure of solar-like oscillations
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4.- FITTING THE BACKGROUND SIGNAL

The structure of an individual acoustic oscillation mode is represented by a Lorentzian profile, which arises from the damped oscillation. In our fitting problem, we will fit 
the amplitude of the Lorentzian (corresponding to the integral over frequency of the profile). This is because the amplitude A is not much correlated to the line width 
Gamma, thus allowing us to simplify the fitting process with DIAMONDS.



To-do list 

• Open your terminal and cd ~/Background/build/ 

• Make sure you have edited the script file multirun using your 
local path and the file localPath.txt as well 

• Run the script via terminal for the star KIC 12008916 as 
./multirun 012008916 0 1
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4.- FITTING THE BACKGROUND SIGNAL

Label of the starting run  
If 0, it will create a folder labeled 00 inside the folder 
Background/results/KIC012008916/

Number of independent runs that can be 
executed with a single command. We keep 
this number to 1 for all our tutorials.KIC ID with 9 digits

Diamonds is used as a library for the Background fitting code. The run number is important to keep track of your fitting outputs. All the outputs will be stored in the folder 
of the run, as you labeled it to execute the code. 
In case you cannot run the script for a ‘newline’ error, you can still run the session by creating yourself a subfolder labeled 00 under the folder ~/Background/results/
KIC012008916/, and then from the directory ~/Background/build/ run the command via terminal 
./background 012008916 0



DIAMONDS Modules
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~/Background/source/
Main source code for Background 
fitting
Background model that we adopt in 
the tutorial (no colored noise 
component)

4.- FITTING THE BACKGROUND SIGNAL

~/Background/results/KIC012008916/
Uniform prior hyper parameters 

The background_hyperParameters.txt file is the most important one to consider. Its content will depend on the star. A good technique to get reliable priors for the 
background is that provided by Kallinger et al. 2016. The Nyquist frequency has to be set according to the cadence of the data taken into account.

In general, the NSMC and X-means parameters should not be changed, at least for the applications that we encounter in this tutorial.



The background model equation for a Kepler star

4.- FITTING THE BACKGROUND SIGNAL
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Photon noise (flat)

super-Lorentzian profilesGaussian envelope oscillations
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The StandardBackgroundModel consists of a 10 free parameters model. No colored noise is included. 



The background model equation

96

Apodization - Decrease of the 
signal for discrete time 
observations

Kallinger et al. 2014
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4.- FITTING THE BACKGROUND SIGNAL

The apodization is the degradation of the signal due to the finite sampling occurring in the time domain. It has to be taken into account to avoid estimating wrong values 
of the parameters of the model. This is seen as a convolution in the time domain, which is therefore a product in the frequency domain. The white noise is not affected by 
this degradation because it is related to the instrumental noise.



The background model in DIAMONDS
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4.- FITTING THE BACKGROUND SIGNAL

The implementation of the background model can be found in the file StandardBackgroundModel.cpp under the folder ~/Background/source/. The function that 
computes the predictions is called predict. The first bit of the code show here represents the initialization of the different free parameters, in the same order as they are 
defined in the prior distributions.



The background model in DIAMONDS
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4.- FITTING THE BACKGROUND SIGNAL

The second bit shows the implementation of the analytical equations that constitute the super-Lorentzian profiles and the Gaussian envelope of the oscillations.



The background model in DIAMONDS
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4.- FITTING THE BACKGROUND SIGNAL

The last bit is multiplying all the components by the apodization signal and is adding a white noise level.



The background model fit for a Kepler star
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Corsaro, De Ridder, García 2015 A&A, 579, 83
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4.- FITTING THE BACKGROUND SIGNAL

KIC 12008916



Results 

• Open a new tab in your terminal and  
cd ~/Background/results/KIC012008916/00/
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4.- FITTING THE BACKGROUND SIGNAL

ASCII file storing all the configuring parameters 
used for the run. From the NSMC to the  
X-means, and ellipsoidal sampler, and more… 
Useful to keep track of the run configuration.

background_hyperParametersUniform.txt

The additional file background_hyperParametersUniform.txt is a copy of the input prior file background_hyperParameters.txt provided in the folder ~/Background/results/
KIC012008916/. It is useful to keep track of which prior distributions you have used for your run session.



Results 

• Open a new tab in your terminal and  
cd ~/Background/results/KIC012008916/00/
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4.- FITTING THE BACKGROUND SIGNAL

The Bayesian evidence of the model that has been fit to the data, its error bar, and the 
information gain.

The Bayesian evidence is expressed in natural logarithm because it is generally either a very larger or very small value. Remember that a Bayesian evidence alone does 
not mean anything and it is not useful. To use the Bayesian evidence you need to compare it with another one, coming from a different model that was fit to the same 
dataset.



Results 

• Open a new tab in your terminal and  
cd ~/Background/results/KIC012008916/00/
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4.- FITTING THE BACKGROUND SIGNAL

Marginal probability distributions for each free parameter in the same order as they 
are defined in the priors. The values are sorted by increasing parameter value.



Results 

• Open a new tab in your terminal and  
cd ~/Background/results/KIC012008916/00/
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4.- FITTING THE BACKGROUND SIGNAL

The likelihood points (values) rejected 
at each iteration of the NSMC. The 
points are clearly sorted in increasing 
order, according to the algorithm 
working principle.



Results 

• Open a new tab in your terminal and  
cd ~/Background/results/KIC012008916/00/
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4.- FITTING THE BACKGROUND SIGNAL

The parameter values for each free parameter, in 
the same order as the marginal distributions and the 
priors. The values within each file are sorted 
according to the likelihood distribution.



Results 

• Open a new tab in your terminal and  
cd ~/Background/results/KIC012008916/00/
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4.- FITTING THE BACKGROUND SIGNAL

Combining the likelihood sampling and pairs of 
parameter sampling, allows you to build up a 
correlation map and therefore extract information of 
the correlations between parameters.



Results 

• Open a new tab in your terminal and  
cd ~/Background/results/KIC012008916/00/
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4.- FITTING THE BACKGROUND SIGNAL

k-dimensional posterior probability distribution. 
You can plot this information against pairs of free 
parameter values to visualize probability maps in 
2D.



Results 

• Open a new tab in your terminal and  
cd ~/Background/results/KIC012008916/00/
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4.- FITTING THE BACKGROUND SIGNAL

This files contains all the estimators (mode, median, mean, credible intervals, variance, 
skewness) for each free parameter. The list is ordered top-bottom according to prior definition (it 
is the same numbering as the MPDs)

The parameter summary is the most important file for Bayesian parameter estimation. In a Bayesian mindset, the estimator that should be preferred is the median value.



Completing process 

• Make sure your run is finished without errors (see the Manual for 
more details) 

• Move the file plot_background.py to ~/Background/ 

• When your computation is completed:  
cd ~/Background/ 
type on your terminal 
python plot_background.py
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4.- FITTING THE BACKGROUND SIGNAL



Plotting (1)
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4.- FITTING THE BACKGROUND SIGNAL

The background fit that matters for us is represented by the solid red line. The individual components of the background model are marked by blue lines, while the 
Gaussian hump on top of the background fit is indicated by a dashed cyan line.



Plotting (2)
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4.- FITTING THE BACKGROUND SIGNAL

The marginal probability distributions (MPDs) of all the background fitting parameters are displayed in a 2x5 format window and ordered from top left to bottom right 
according to their order in the prior parameter file and in the model of the background implemented in DIAMONDS. The colored bands mark the region of the credible 
levels, corresponding to the 68.3% of the total probability.



Questions 

• What is the value of              and what estimator (mode, etc.)? 

• Can you say what is the evolutionary stage of the star from  
              (Main Sequence, Subgiant, Red Giant)? 

• What is the Radius of the star?
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4.- FITTING THE BACKGROUND SIGNAL

?

Measure the value of nu_max and calculate the resulting Radius of the star.  
R/R_s = (nu_max/nu_max,s) (Dnu/Dnu_s)^(-2) (Teff/Teff_s)^0.5 
Use Dnu = 12.9 microHz, and Teff = 5100 K, nu_max,s = 3150 microHz, Dnu_s = 134.9 microHz, Teff_s = 5777 K. 
Exp. R ~ 5.2 R_s
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Evolved cool stars

114

5. - FITTING THE OSCILLATION MODES
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Main Sequence Red Giant Branch

by T. Kallinger



The power spectrum of a low-luminosity RGB
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KIC 12008916
Corsaro, De Ridder, García 2015 A&A, 579, 83
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To-do list 

• Open your terminal and cd ~/PeakBagging/build/ 

• Make sure you have edited the script file multirun using your 
local path and the file localPath.txt as well 

• Run the script via terminal for the star KIC 12008916 and one 
chunk of its PSD as 
./multirun 012008916 0 1 run_4

Label of the starting run  
PeakBagging/results/
KIC012008916/run_4/00/ Number of independent runs.

KIC ID with 9 digits
A label (string) with the name of 
your chunk (can be any name you 
like)

An automated method to measure DP1 (the asymptotic period spacing of gravity modes) has been developed by Vrard M. et al. 2016. Other methods rely on a bi-
dimensional grid-search approach (see Buysschaert et al. 2016; Corsaro et al. 2015b).

If you have a ‘newline’ error when executing the script, then you should create a subfolder labeled 00 under the directory ~/PeakBagging/results/KIC012008916/run_4/. 
Then, go back to ~/PeakBagging/build/ and execute the command via terminal 
./peakbagging 012008916 run_4 00



Modules
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~/PeakBagging/source/

Main source code for PeakBagging fitting

PeakBagging model that we adopt in 
the tutorial

~/PeakBagging/results/KIC012008916/

Solution from previous background fit

5. - FITTING THE OSCILLATION MODES

Background model that we adopt in 
the tutorial (no colored noise)

The Nyqvist frequency from your 
time-series

Folder of the PSD chunk to analyze

Conversely to the Background code, in this case we have an additional file, backgroundParameters.txt, to contain the solution for the background fitting from the 
previous analysis, and a folder (here labeled run_4) that contains the configuring parameters of the PSD chunk that we want to fit.



Modules
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~/PeakBagging/results/KIC012008916/run_4/
Lower and upper value of the 
frequency range used for the fitting

5. - FITTING THE OSCILLATION MODES

The uniform prior hyper parameters 
for Lorentzian and sinc^2 profiles

Lorentzian profile

Sinc^2 profile

The order of the frequency centroids does not matter in the setting of the priors. However, one has to keep in mind that in the resulting parameter summary, the free 
parameters will be listed in the same order as the priors are defined, with the block of Lorentzian profiles before that of the sinc^2 profiles.



Modules
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~/PeakBagging/results/KIC012008916/run_4/
Lower and upper value of the 
frequency range used for the fitting

5. - FITTING THE OSCILLATION MODES

The uniform prior hyper parameters 
for Lorentzian and sinc^2 profiles

Lorentzian profile

Sinc^2 profile

The order of the frequency centroids does not matter in the setting of the priors. However, one has to keep in mind that in the resulting parameter summary, the free 
parameters will be listed in the same order as the priors are defined, with the block of Lorentzian profiles before that of the sinc^2 profiles.



Modules
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~/PeakBagging/results/KIC012008916/run_4/
Lower and upper value of the 
frequency range used for the fitting

5. - FITTING THE OSCILLATION MODES

The uniform prior hyper parameters 
for Lorentzian and sinc^2 profiles

Lorentzian profile

Sinc^2 profile

The order of the frequency centroids does not matter in the setting of the priors. However, one has to keep in mind that in the resulting parameter summary, the free 
parameters will be listed in the same order as the priors are defined, with the block of Lorentzian profiles before that of the sinc^2 profiles.



Modules
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~/PeakBagging/results/KIC012008916/run_4/
Lower and upper value of the 
frequency range used for the fitting

5. - FITTING THE OSCILLATION MODES

The uniform prior hyper parameters 
for Lorentzian and sinc^2 profiles

Lorentzian profile

Sinc^2 profile

The order of the frequency centroids does not matter in the setting of the priors. However, one has to keep in mind that in the resulting parameter summary, the free 
parameters will be listed in the same order as the priors are defined, with the block of Lorentzian profiles before that of the sinc^2 profiles.

It is important to note that these prior parameters will be treated as a unique block during the computation, with the block of the Lorentzian profiles before that of the 
sinc^2 profiles. We will come back to that later in the presentation.



The Lorentzian and sinc2 profiles
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5. - FITTING THE OSCILLATION MODES

Mixed model  
Lorentzian profiles + Sinc2 profiles
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The mixture model of Lorentzian and sinc^2 profiles arises from the presence of mixed dipole modes in the red giant stars. Mixed dipole modes appear to be often 
unresolved, meaning that they do not exhibit a line width that can be measured with reliability. In this case, it is pointless to fit an oscillation peak with a Lorentzian profile, 
because the line width parameter is not physically meaningful. A sinc^2 profile requires only two free parameters, its priors are easy to set up and it improves the overall 
efficiency of the fitting process. For less evolved stars (essential main sequence stars with solar-like oscillations) there is not need to include sinc^2 profiles because the 
oscillation peaks do show some degree of resolution, hence they exhibit a width that can be measured.



The Lorentzian and sinc2 profiles
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5. - FITTING THE OSCILLATION MODES
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Sinc2 Profile Lorentzian Profile

The amplitude in the Lorentzian profile has to be rescaled by a factor sqrt(2) if the power spectrum is computed as a single-sided one. This is because normally the 
computed power spectra have to satisfy the Plancherel theorem of energy conservation from time domain to frequency domain.



The peak bagging model in DIAMONDS
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5. - FITTING THE OSCILLATION MODES

The implementation of the peak bagging model can be found in the file LorentzianSincMixtureModel.cpp, under the directory ~/PeakBagging/source/. The predict 
function contains a first bit with a loop over all the Lorentzian profiles, with frequency centroid (microHz), amplitude (ppm), and line width (microHz) for each profile, as 
given with the input prior information.



The peak bagging model in DIAMONDS
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5. - FITTING THE OSCILLATION MODES

The second bit is a loop over all the sinc^2 profiles, with free parameters of frequency centroid (microHz) and height (ppm^2/microHz).



The peak bagging model in DIAMONDS
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5. - FITTING THE OSCILLATION MODES

The last bit is the product with the apodization signal, and finally the sum of the white noise component and of the other background components (which are in turn 
modulated by the same apodization signal), and that are kept as a constants in this case.



Fitting an individual radial order
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5. - FITTING THE OSCILLATION MODES

IVth Azores International Advanced School in Space Sciences Horta, Faial, Azores | 19 July 2016

KIC 12008916

This is the chunk of PSD that you are going to fit with a peak bagging model. In blue is the fit that is obtained with DIAMONDS. The frequency range of this chunk 
corresponds to the value of the large frequency separation Dnu. The radial mode is the high peak on the right side of the range.



Questions
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5. - FITTING THE OSCILLATION MODES
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KIC 12008916

Spot the radial (l=0), the quadrupole (l=2) and the octuple (l=3) mode

Which are the most p-dominated mixed modes?



Completing process 

• Make sure your run is finished without errors (see the Manual for 
more details) 

• Move the file plot_peakbagging.py to ~/PeakBagging/ 

• When your computation is completed:  
cd ~/PeakBagging/ 
type on your terminal 
python plot_peakbagging.py
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5. - FITTING THE OSCILLATION MODES



Plotting (1)
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5. - FITTING THE OSCILLATION MODES

If for example we want to access the frequency of the last peak on the right side, l=0, we need to count how many Lorentzian profiles were fit in our chunk (in this case 7), 
therefore evaluate the number of the line in the parameterSummary.txt file that corresponds to the frequency of the last Lorentzian profile, namely 7x3 = 21. So the 
frequency of the radial mode can be found in line 21 of the output file containing all the estimators. If instead we want to pick up the frequency output of the last sinc^2 
profile, the one with the highest frequency, then we have to consider that we have 5 sinc^2 profiles, hence the corresponding frequency will be placed in line 7x3 + 5x2 = 
31 of the output file containing the estimators of each free parameter.



Plotting (2)
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5. - FITTING THE OSCILLATION MODES

The plotting of the marginal probability distributions (MPDs) shows the Lorentzian profiles (in green) in a format 3x3, where each row corresponds to a single oscillation 
peak, with parameters Frequency centroid (microHz), Amplitude (ppm), Linewidth (microHz) from left to right. The sinc^2 profile oscillation peaks are instead displayed in 
yellow in a 2x4 format, where in each row there are two oscillation peaks, with corresponding parameters Frequency centroid (microHz) and Height (ppm^2/microHz) 
from left to right.



Results 

• Open a new tab in your terminal and  
cd ~/PeakBagging/results/KIC012008916/run_4/00/
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5. - FITTING THE OSCILLATION MODES

The output files generated from the peak bagging fitting process. The description of the output files is the same as that of the background fitting.



Questions
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5. - FITTING THE OSCILLATION MODES
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KIC 12008916

Measure the spacing, in period, between the two frequencies marked by the vertical blue lines. The first frequency is given in the slide, while the second one has to be 
computed from the fitted frequencies of the last two sinc^2 profiles (those marked by the arrows). To do so, we need to compute the average value between the two 
peaks. This is because the two peaks correspond to the components m=-1 and m=+1 since the inclination angle of the spin axis of this star is close to 90deg. 



Questions
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5. - FITTING THE OSCILLATION MODES
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He-core burning

H-shell burning

Compare the observed period spacing with this DP - Dnu diagram, and say what is the evolutionary stage of the star (either He-burning-core RG or H-burning-shell RG).
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Peak significance on multiple modes
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6. - PEAK SIGNIFICANCE TEST
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Spot the radial mode (l=0)

In this chunk of an F-type star we cannot clearly distinguish which of the two peaks is an l=1 (or l=0).



Peak significance on multiple modes
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6. - PEAK SIGNIFICANCE TEST
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1   0  

How can we test whether this is correct?

To test our interpretation we perform a Bayesian model comparison.



Peak significance on multiple modes
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6. - PEAK SIGNIFICANCE TEST
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1   0  1   0  

Only 𝓵 = 0

Bayesian Evidence



Peak significance on multiple modes
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6. - PEAK SIGNIFICANCE TEST
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1   2 0 

Both 𝓵 = 2 and 𝓵 = 0

Bayesian Evidence

To test the case of a double peak (with blending), we need three models (N_peaks + 1). One model will not include any peak, a second model will only include one peak, 
and a third model will include two peaks.



Peak significance on multiple modes
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6. - PEAK SIGNIFICANCE TEST
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1   2 0 

Both 𝓵 = 2 and 𝓵 = 0

Model with 𝓵 = 2  
FAVORED

Bayesian Evidence

Detection Probability

A useful way to note down the significance of peak is to compute its detection probability as defined in the slide. In a Bayesian framework, model should not be excluded 
even if their detection probability is very close to 0%. An honest and correct way of reporting results arising from a Bayesian model comparison is to quote all the models 
tested, and their corresponding probabilities.



Simulation calibration

• Simulations test 

• 1000 artificial chunks of 
PSD

• Blind search for those 
with a peak
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6. - PEAK SIGNIFICANCE TEST
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100 Simulations

900 Simulations

Strong Evidence (Jeffreys’ scale)

Bayes factor

All peaks found!

In a blind search for 100 oscillation peaks hidden in a set of 1000 simulations, we could find all those simulations containing an oscillation peak by adopting a strong 
evidence condition on the Bayes factor. A strong evidence is what I recommend to conclude on the significance of a model. 



Perform the significance test on a peak

l = 3

KIC 12008916
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6. - PEAK SIGNIFICANCE TEST

Test the significance of the l=3 mode by means of the Bayesian evidence.

Provide the value of the natural logarithm of the Bayes factor.
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To-do list (1) 

• Open your terminal and cd ~/PeakBagging/results/
KIC012008916/ 

• Run the script copy_run with the following command 
./copy_run run_4 run_4A 

• Open the file run_4A/resolvedPeaks_hyperParameters.txt  
and comment out the block corresponding to the peak you want 
to test (l=3)

6. - PEAK SIGNIFICANCE TEST
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To-do list (2) 

• Now cd ~/PeakBagging/build/ 

• Run again the multirun script via terminal but this time as 
./multirun 012008916 0 1 run_4A

6. - PEAK SIGNIFICANCE TEST

What are you doing exactly?

What is the difference between run_4 and run_4A?

Why do you need two different runs?



Results 

• You need to compare results that are stored in the two folders 
 
~/PeakBagging/results/KIC012008916/run_4/00/ 
 
~/PeakBagging/results/KIC012008916/run_4A/00/
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5. - FITTING THE OSCILLATION MODES



Perform the significance test on a peak

l = 3

KIC 12008916
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6. - PEAK SIGNIFICANCE TEST

?

~/PeakBagging/results/KIC012008916/results/run_4/
~/PeakBagging/results/KIC012008916/results/run_4A/

Test the significance of the l=3 mode by means of the Bayesian evidence.

Provide the value of the natural logarithm of the Bayes factor and say what is the strength of evidence that you have found.

What should you change in the set up of the fitting to test this peak?

The peak is strongly significance (A natural logarithm of the Bayes factor > 40), hence we assume it is detected with a probability of 100%.
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Enrico Corsaro - enrico.corsaro@cea.fr

• Problem 1: big dataset + fitting numerous oscillation modes 
(peaks) per star (can be more than 100)

• Problem 2: testing if a peak is real or not (noise)

Low S/N

Problems in the fitting of the oscillations
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Problem 1  
Solving a high-dimensional 

fitting problem



High-dimensional Model
Enrico Corsaro - enrico.corsaro@cea.fr

KIC 9139163

Corsaro & De Ridder 2014 A&A, 571, 71

About 180 free parameters!  
Computational time increases a lot
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Multi-modal Model
Enrico Corsaro - enrico.corsaro@cea.fr
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Multi-modal Model
Enrico Corsaro - enrico.corsaro@cea.fr
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Multi-modal Model
Enrico Corsaro - enrico.corsaro@cea.fr
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Multi-modal Model
Enrico Corsaro - enrico.corsaro@cea.fr

Corsaro & De Ridder 2014 A&A, 571, 71
IVth Azores International Advanced School in Space Sciences Horta, Faial, Azores | 19 July 2016



Results
Multi-modal inference problem on 9 
consecutive radial orders (27 peaks)

Enrico Corsaro - enrico.corsaro@cea.fr

Corsaro & De Ridder 2014 A&A, 571, 71

Only 9 free parameters!
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Comparison

Red: uni-modal fit 
Blue: multi-modal fit
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Corsaro & De Ridder 2014 A&A, 571, 71
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Comparison

Red: uni-modal fit 
Blue: multi-modal fit
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