the **Production** and **Transmission** of Lyman photons in faint LAEs at z = 2-3

Ryan Trainor (Berkeley/Miller Institute) with Charles Steidel, Eliot Quataert, Mariska Kriek, Gwen Rudie, Allison Strom, Shanon Oden, Anna de Graaff

outline

- 1. Stellar feedback in faint galaxies
- 2. KBSS-Lyα survey description
- 3. Measurements of:
 - a. Gas kinematics and covering fraction
 - b. Ly α (and LyC) escape fraction
 - c. Properties of star-forming regions

stellar feedback shapes galaxies ...and their emission

Phil Hopkins & FIRE

HOT WARM COLD

Erb 2015 (Nature)

Lyman emission of galaxies depends on:

- 1. Photon production
- 2. Escape fraction

26 April 2016

low mass galaxies are the key?

Keck Baryonic Structure Survey

- **KBSS** includes 1000+ LBGs in QSO fields at $z \approx 2-3$
 - $-L \approx L_*$ galaxies, $\log M_* \approx 9.5-11.5$
 - Rudie+2012; Trainor+2012; Steidel+2014; Strom+ in prep.
- **KBSS-Lya** includes ~1000 LAEs, 318 with spectra
 - $-L \approx 0.1 L_*$ galaxies, $\log M_* \approx 8-9.5$

three-tiered KBSS-Ly α samples

three-tiered KBSS-Ly α samples

318 LAEs with rest-UV spectra

 $z_{\rm Ly\alpha}, \sigma_{\rm Ly\alpha}, \Delta v_{\rm peaks}$ $[v_{\rm abs}, f_{\rm cov}]$

Shanon Oden

Keck/LRIS Lyα spectra RFT+2015

26 April 2016

three-tiered KBSS-Ly α samples

feedback physics in the UV line profiles

26 April 2016

gas kinematics in line emission

26 April 2016

LAE composite metal-enriched outflows

correlated absorption and emission

As $Ly\alpha$ EqW increases (or luminosity decreases), outflow velocity decreases

RFT+2015

26 April 2016

LyC and Ly α escape

KLCSS: Deep LyC observations of LBGs and bright LAEs (Steidel+, in prep.)

LyC not detected LyC detected

1220

1200

Rest Wavelength (Å)

1220

1210

1180

26 April 2016

1160

10

6

4

0

(f ")

Relative Intensity N

what about the stars?

As we heard from Sally Oey: Lyman photons and kinetic stellar feedback originate in the same star-forming regions!

26 April 2016

engines of feedback

- BPT (NII) diagram
 - Star-formation vs. AGN
 - Gas-phase metallicity (and ionization/excitation)

$z \sim 2-3$ stellar engines

- BPT (NII) diagram
 - Star-formation vs. AGN
 - Gas-phase metallicity (and ionization/excitation)
- High-z galaxies are offset from low-z locus

$z \sim 2-3$ stellar engines

- BPT (NII) diagram
 - Star-formation vs. AGN
 - Gas-phase metallicity (and ionization/excitation)
- High-z galaxies are offset from low-z locus
- Approach Kewley+2001 "maximum starburst" limit
- See Steidel+2014;
 Shapley+2015; Sanders +2016; Strom+2016 in prep.

BPT-Lyα relation (LBGs)

26 April 2016

BPT-Lyα relation (LBGs)

KBSS LBGs show a gradient in $W_{Ly\alpha}$

- Emitters have high ionization, low metallicity
- Absorbers have low ionization, high metallicity

Average faint LAEs consistent with highest-ionization LBGs

See also: Hagen+2016, Nakajima+2013

26 April 2016

BPT-Lyα relation (LBGs+LAEs)

See also: Hagen+2016, Nakajima+2013

26 April 2016

LAE sub-populations continue trend

Stellar pops. determine ionizing emissivity

- ξ_{ion} is harder, higher, and more sustained
- Effects estimates and requirements for $f_{\rm esc}$

26 April 2016

summary

- The production and transmission of Lyman photons are linked by stellar feedback
- Outflow velocity and gas covering fraction scale with galaxy mass (and luminosity, SFR, etc.)
- Stellar populations and radiation field vary with galaxy mass (and metallicity, etc.)
- Therefore, photon escape varies strongly with these properties
- Low-mass galaxies (faint LAEs) are key probes