Studying Lyman alpha halo of LARS+eLARS galaxies

Armin Rasekh

PhD student Stockholm University

Motivation

- Ly α study of the halo of the nearby galaxies
 - Measuring the extension of the halos
 - Measuring the halo fraction

 Having better understanding of the evolution of the Lyα halo size of galaxies

An example of the LARS galaxies:

Analysis

- Separating the cores from the halos – Critical (SFRD) = 0.01 M_{\odot} /yr/kpc²
- Fitting function:
 - Exp: $A \times exp(-r/r_{sc})$

Results

Result

Histogram of Halo frac

Results

Results

Convolving the sample to z=3

 Measuring the scale length in the non-conv FUV frame for the whole profile

 Convolving with the MUSE seeing and adding another exponential term to fit to the Lyα profile

Convolving the sample to z=3

profile for non-zero halo frac

profile for non-zero halo frac

Conclusion

- As expected galaxies with high halo fractions have typically more extended Lyα halo
- No significant (anti-)correlation between Halo frac and:
 - Escape fraction, Lyα EW, Lyα luminosity, Nebular extinction

- Convolved images to z=3 with the MUSE seeing:
 - MUSE halos are more extended than LARS halos

Conclusion

- As expected galaxies with high halo fractions have typically more extended Lyα halo
- No significant (anti-)correlation between Halo frac and:
 - Escape fraction, Lyα EW, Lyα luminosity, Nebular extinction
- Convolved images to z=3 with the MUSE seeing:
 - MUSE halos are more extended than LARS halos