The Lyman α Emitter Luminosity Function at 3 < z < 6 from MUSE-Wide (Paper submitted to A&A)

Edmund Christian Herenz & MUSE Collaboration

Stockholm University

September 13, 2018

Why do we care about the Ly α Luminosity Function?

$$\mathrm{d}N_{\mathrm{LAE}} = \phi(L_{\mathrm{Ly}\alpha})\mathrm{d}L_{\mathrm{Ly}\alpha}\mathrm{d}V$$

- Luminosity functions provide the gold standard for summarising the changing demographics of galaxies with cosmic look back time.
- Essential physical mechanisms of galaxy formation and evolution are "frozen-in" into the LF.
- Substantial high-redshift galaxy samples:
 - ► Continuum Selection (≈LBGs)
 - Emission Line Selection (LAEs)

LFs connected via $EW_{Ly\alpha}$ distribution: $P(M_{UV}|EW_{Ly\alpha})$

The MUSE-Wide (MW) survey

Herenz et al. (2017) - 24 MUSE pointings - 237 LAEs DR1: Urrutia et al. (in prep.) - 44 MUSE pointings - 479 LAEs

MW LAEs not listed in 3D/HST or CANDELS catalogues

Selection function $f_c(F_{Ly\alpha}, \lambda_{Ly\alpha}^{obs})$ from source insertion and recovery experiments

- Artificial point sources: 3D Gaussian, FWHM(λ) as PSF, $v_{FWHM} = 250 \text{ km s}^{-1}$ \Rightarrow **PSSF** (*point source selection function*)
- Flux rescaled MUSE-HDFS LAEs (degraded to MUSE-Wide PSF)
 - \Rightarrow **RSSF** (real source selection function)

Individual selection functions

Final selection functions

LAE Sample for LF: $f_c > 15$ %

179 of 237 remain (75.6%)

Non-parametric Test for LF evolution.

Using a test developed by Efron & Petrosian (1992) we can test for seperability of the LAE LF (H_0):

 $\Psi(L,z) = \phi(L)\rho(z) \,.$

Redshift range	$ \tau_{\mathrm{PSSF}} $	$ \tau_{\mathrm{RSSF}} $	$p_{ m PSSF}$	$p_{ m RSSF}$
2.9 < <i>z</i> ≤ 4	0.47	0.24	0.32	0.40
4.0 < <i>z</i> ≤ 5.0	0.79	0.98	0.21	0.16
5.0 < <i>z</i> ≤ 6.9	0.05	0.29	0.48	0.39
$2.9 < \mathbf{z} \leq 6.9$	0.46	0.31	0.32	0.38

 $\Rightarrow \mathcal{H}_0$ can not be rejected. We can determine global $\phi(L)$.

3 different methods to calculate LAE LF

1/V_{max} (Schmidt 1968):
$$V_{\max,i} = \omega \int_{z_{\min}}^{z_{\max}} f_c(L_{Ly\alpha,i}, z) \frac{dV}{dz} dz$$

$$\phi_{1/V_{\max}}(\langle L_{\mathrm{Ly}\alpha} \rangle) = \frac{1}{\Delta L_{\mathrm{Ly}\alpha}} \sum_{k} \frac{1}{V_{\max,k}} \qquad \Phi(L_{\mathrm{Ly}\alpha,k}) = \sum_{i \leq k} \frac{1}{V_{\max,i}}$$

C⁻ (Lynden-Bell 1971):

$$\Phi(L_{\mathrm{Ly}\alpha,\mathrm{k}}) = \Phi(L_{\mathrm{Ly}\alpha,1}) \prod_{i=2}^{k} \left(1 + \frac{1}{T_i}\right) \text{ with } T_i = \sum_{j=1}^{N_i} \frac{f_c(L_{\mathrm{Ly}\alpha,i}, z_j)}{f_c(L_{\mathrm{Ly}\alpha,j}, z_j)}$$

Page & Carrera (2000):

$$\phi_{\rm PC}(\langle L_{\rm Ly\alpha} \rangle) = \frac{N_{\langle L_{\rm Ly\alpha} \rangle}}{\omega \int_{L_{\rm min}}^{L_{\rm max}} \int_{Z_{\rm min}}^{Z_{\rm max}} f_{\rm C}(L_{\rm Ly\alpha}, z) \, \frac{\mathrm{d}V}{\mathrm{d}z} \, \mathrm{d}z \, \mathrm{d}L}$$

Bias in LAE LF when not accounting for Ly α haloes!

C^- LAE LF $\approx 1/V_{max}$ LAE LF

Maximum-Likelihood Analysis (Sandage 1976):

$$\phi(L) dL = \phi^* \left(\frac{L}{L^*}\right)^{\alpha} \exp\left(-\frac{L}{L^*}\right) \frac{dL}{L^*}$$
 (Schechter 1976)

$$\mathcal{L} = \prod_{i=1}^{N_{\text{LAE}}} p(L_i, z_i) \quad \Leftarrow \quad p(L_i, z_i) = \frac{\phi(L_i) f_c(L_i, z_i)}{\int_{L_{\min}}^{L_{\max}} \int_{z_{\min}}^{z_{\max}} \phi(L) f_c(L, z) \frac{dV}{dz} dL dz}$$

Differential (binned) LAE LFs

Resulting L^* and α depend sensitively on size of the bins and bin placement.

 \Rightarrow Don't fit to binned data!

Comparison to literature

Summary

• $(L_{Ly\alpha}, z)$ -space probed by MUSE-Wide:

$$42.2 \le \log L_{\rm Ly\alpha}[{\rm erg\,s^{-1}}] \le 43.5$$
 $2.9 \le z \le 6.7$

(Herenz+2017 sample: $\omega = 22.2 \Box' = V = 2.3 \times 10^5 \,\text{Mpc}^3$)

- Within this sampled region (L_{Lyα}, z)-space LAE LF. appears non-evolving.
- Schechter parameterisation provides good fit Power law not (see Paper).

$$\log L^*[\text{erg s}^{-1}] = 42.66^{+0.22}_{-0.16} \qquad \alpha = -1.84^{+0.42}_{-0.42}$$
$$\log \phi^*[\text{Mpc}^{-3}] = -2.71$$

Literature LFs not accounting for extended low-SB Lyα halos (basically all, except Drake et al. 2017) are significantly biased at L < L*.</p>