Interpreting the Properties of Starbursts with Improved Models

Elizabeth Stanway University of Warwick, UK

 withJ J Eldridge University of Auckland, NZ
Lin Xiao, University of Science and Technology of China in Hefei and many others

Outline

- The Need for New Galaxy Models
- Challenges from the Distant Universe
- Modelling Stellar Populations
- Modelling stellar populations
- The binary problem
- BPASS: Binary population and spectral synthesis

The Challenge

Distant galaxies (and local Lyman Continuum leakers) are typically intense starbursts, with emission dominated by massive stars

Their properties deviate significantly from those the nearby population... but this isn't intrinsic to redshift, more likely to specific star formation rate or surface density of star formation.

They probe low metallicity, young stellar populations

Massive stars at $\mathbf{z \sim} 3$?

Elizabeth Stanway - Galactic Labyrinths, Crete, September 2018

Massive stars at $\mathrm{z} \sim 3$?

Elizabeth Stanway - Galactic Labyrinths, Crete, September 2018

Lyman- α EW distribution

Observed

EW(Ly- α) can exceed 200A

... before correcting for scattering and absorption.

This is challenging at moderate metallicity with single star models (which under-predict the massive star contribution)
e.g. Malhotra \& Rhoads (2002), Zheng et al (2014), Dijkstra \& Wyithe (2007)

Massive stars at $\mathrm{z} \sim 3$?

Elizabeth Stanway - Galactic Labyrinths, Crete, September 2018

Massive stars at $\mathrm{z} \sim 3$?

Elizabeth Stanway - Galactic Labyrinths, Crete, September 2018

Massive stars at $\mathrm{z} \sim 3$?

Elizabeth Stanway - Galactic Labyrinths, Crete, September 2018

The lonizing Spectrum at z~3

> Multi-object near-IR spectrographs on 8-10m class telescopes (notably MOSFIRE on Keck) are making the high z rest-optical diagnostics accessible for the first time.

(Strom et al 2016, 2018, see also Steidel et al 2016, Kriek et al 2016, Reddy et al 2016)

Interpreting Observations

So we know we're looking at intense, young, massive-star dominated starbursts with hard ionizing spectra.

These are also at significantly sub-Solar metallicities

To go further and interpret observations we need suitable models...

Population \& Spectral Synthesis

Stellar
evolution
tracks
(isochrones)

stars

Sequence

Massive
stars

> Stellar remnants

Population \& Spectral Synthesis

Massive stars

Stellar remnants

Population
Synthesis

Population Synthesis

Stellar population synthesis (SPS) codes take a population of co-eval stars, distributed in mass according to an IMF, and either
(i) Build a composite spectrum from empirical observations, or
(ii) Evolve the population according to theoretical models.

Leading evolutionary SPS codes include Bruzual and Charlot (BC03), Starburst99 (Leitherer et al), PEGASE (Fioc \& Rocca Volmerange et al), FSPS (Conroy et al) and the Maraston 2005 models.

Population Synthesis

This is not a new idea... e.g.

STELLAR EVOLUTION IN ELLIPTICAL GALAXIES
 Beatece M. Tiveuer
 Uniempity of Teas at Dalas
 Spinhed IWY May M
 ABSTRACT

Eliptical galunies are described by nodeb is shist the evolution of man is followed for 12 baisen pars. Selar birtirutes choves are mainly power lavs is saillar mav, pat of ather wor phin; eflests of these evernimglifations ase discuowed. Integrated magsitedes, bread-basd colors.
 as a funstian of time.

Tinsley (1972)
Elizabeth Stanway - Galactic Labyrinths, Crete, September 2018

Population Synthesis

But there's one fairly large issue...

All of these synthesis codes use primarily isolated, single star evolution.

Binary fractions

And most stars are not isolated!

Binary Fractions are even higher at low Z

"The close binary fraction of sun-like stars is strongly anticorrelated with metallicity", Moe et al, arXiv:1808.02116

The Need for New Models

- The spectra of young stellar populations are dominated by the most massive stars.
- 70\% of massive stars interact with a binary partner in their evolutionary lifetime.
- The effects of these interactions are strongest at low metallicities
=> We cannot ignore binary effects at high z

Population \& Spectral Synthesis

```
Binary Stellar
evolution tracks
    (function of
mass, period,
mass ratio, Z)
```


Population \& Spectral Synthesis

Elizabeth Stanway - Galactic Labyrinths, Crete, September 2018

Binary Population Synthesis

There are two broad approaches:
Rapid Pop Synth (e.g. BSE, Binary_c)

- A semi-analytic approach to evolution and interactions
- Allows parameter space to be explored.

Detailed Pop Synth (e.g. BPASS)

- Uses detailed stellar structure and evolution models
- Much slower, but much more accurate at key evolutionary phases

Hybrid: detailed models for some stars, in a semi-analytic framework (e.g. Amsterdam group, Yunnan group)

binary population \& spectral synthesis

- BPASS = Binary Population And Spectral Synthesis
- $\mathbf{\sim 2 5 0 , 0 0 0}$ detailed stellar evolution models in v2.2.
- A stellar population is generated with a specified IMF, period distribution, binary fraction etc and each star is evolved through detailed modelling, including binary interactions.
- Evolution models are then combined with atmosphere models
- The resultant spectra, HR diagrams and other data are available in our model data release; current version is v2.2.1
- BPASS.AUCKLAND.AC.NZ or WARWICK.AC.UK/BPASS
(Eldridge \& Stanway 2009, 2012; Stanway et al 2016; Eldridge, Stanway et al 2017)

binary population \& spectral synthesis

Binary Population and Spectral Synthesis Version 2.1: construction, observational verification and new results

J.J. Edridger ${ }^{1}$, E. R. Starway ${ }^{2}$! L. Xias ${ }^{1}$, L.A.S. McClelland ${ }^{1}$, G. Taylor ${ }^{1}$, M. Ng ${ }^{1}$, S.M.L. Grels ${ }^{2}$, 1.C. Bray'

Abstract

The Bitary Populmion and Spectal Symhests (BPASS) seite of biancy stelar evolution models nad synthetic soellat popalatioes peowides a franework for she plysically motivnted analyab of both the inbegrated light forn distaat stellar popelations and the detalled properthe of thowe pearty. Wh prowat a new veribon 2.1 duta velowee of thene modets, detaling the methodology by which BPA. 85 incorporate binary mose traruber and ite effect on stellar evolstion pethwwes, an welt ne the corntruction of sirple steliar populatioss. We densenatrate iry tests of the lutes BPASS model sulte demonatriting iss abilty te repeoduce the colours and derived peoperties of enselved stellar popclatiots, inchiling weit-conatraised diatribution of stellar vetanant mansos. We deacribe the ideatification of supernova prognitors in our models, and desonstrate a good agrecmest to the peopertses of otperved progenitcos. We also test our models againat plotometric and spectroecopie observations of aareselved steiler populations, both in the local and distant Valvense, finding that birary modela provide a welf-cotalotent explanation for oberved goliaxy propertios actoes a beoed sebbihit range. Fiadly, we carcfuly doscribe the limitations of oer models, and aress where we expect to mee significant liprowenent is future verkions.

See also
our new
User Manual.

binary population \& spectral synthesis

Reevaluating Old Stellar Populations

E. R. Stanway ${ }^{1 \star}$ and J. J. Eldridge ${ }^{2} \dagger$
${ }^{1}$ Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
${ }^{2}$ Department of Physics, Private Bag 92019, University of Auckland, New Zealand

Accepted 2018 May 17. Received 2018 May 14; in original form 2018 March 27

Abstract

Determining the properties of old stellar populations (those with age $>1 \mathrm{Gyr}$) has long involved the comparison of their integrated light, either in the form of photometry or spectroscopic indexes, with empirical or synthetic templates. Here we reevaluate the properties of old stellar populations using a new set of stellar population synthesis models, designed to incorporate the effects of binary stellar evolution pathways as a function of stellar mass and age. We find that single-aged stellar population models incorporating binary stars, as well as new stellar evolution and atmosphere models, can reproduce the colours and spectral indices observed in both globular clusters and quiescent galaxies. The best fitting model populations are often younger than those derived from older spectral synthesis models, and may also lie at slightly higher metallicities.

Key words: methods: numerical - binaries: general - galaxies: stellar content globular clusters: general

binary population \& spectral synthesis

- v2.2 (Stanway \& Eldridge 2018) deals primarily with old stellar populations - young stellar pops are mostly unchanged
- It includes more low mass models, improved binary parameter distributions, improved rejuvenation and post-main-sequence prescriptions
- Adds Lick indices and mass-to-light ratios to our standard outputs
- Adds the Chabrier IMF (with $\mathrm{M}_{\text {max }}=100$ or $300 \mathrm{M}_{\text {sun }}$) to our standard outputs
- Paper and data release now out (arXiv:1805.08784)
- BPASS.AUCKLAND.AC.NZ or WARWICK.AC.UK/BPASS
(Eldridge \& Stanway 2009, 2012; Stanway et al 2016; Eldridge, Stanway et al 2017)

Binary Interaction Fraction

BPASS v2.2 Stanway \& Eldridge (2018)

BPASS

BPASS

BPASS

BPASS

The result is a set of output integrated stellar-light spectra at 51 age steps from 1 Myr to 100 Gyr , together with transient rates, stellar number counts, HR diagram information, etc.

The spectra yield the shape, strength and absorption lines of the Lyman continuum

Further post-processing is then possible to study non-stellar components.

BPASS + post-processing

HR Diagram Isocontours

Stellar Type Ratios

So far so good...

... but let's get back to where we started: the observed properties of distant, young, low Z stellar populations

Stellar Lines at z~3

Steidel et al. (2016), see also Eldridge \& Stanway (2012)

Stellar Lines at z~3

Steidel et al. (2016), see also Eldridge \& Stanway (2012)

The Effect of Binary Evolution

Binary evolution produces stronger Lyman continuum flux:

The Effect of Binary Evolution

Binary evolution produces stronger Lyman continuum flux:

Difference in lonizing Flux

See also Wilkins et al 2016; Ma et al 2016; Steidel et al 2016

Emission Line Diagnostics

The ratio of optical emission line strengths provides information on the hardness of the ionizing radiation field

Emission Line Diagnostics

The ratio of optical emission line strengths provides information on the hardness of the ionizing radiation field

Elizabeth Stanway - Galactic Labyrinths, Crete, September 2018

The lonizing Spectrum at z~3

Multi-object near-IR spectrographs on $8-10 \mathrm{~m}$ class telescopes (notably MOSFIRE on Keck) are making the high z rest-optical diagnostics accessible for the first time.
(Strom et al 2016, see also Steidel et al 2016, Kriek et al 2016, Reddy et al 2016)

The lonizing Spectrum at z~3

BPASS Caveats and Gotchas

He II lines seem to be systematically underestimated

- Stellar Winds at low metallicity
- X-ray binaries, PNe and CVs

We currently fix the elemental abundance ratios at Solar - this will deviate at low metallicity

- Needs new stellar models
- Needs new atmosphere models

We think we need even higher binary fractions at low metallicity

- Needs new parameterisation

Elizabeth Stanway - Galactic Labyrinths, Crete, September 2018

Abundances

But remember:

Stellar metallicity is not necessarily gas phase metallicity.

The evolution of binary fraction with Z

Work in progress!

Conclusions

- Galaxy observations sensitive to the Lyman continuum are finding evidence for intense, highly ionizing stellar populations across a wide redshift range.
- Incorporating binaries in stellar pop synth models is necessary in this regime.
- Our BPASS models include detailed binary models bpass.auckland.ac.nz.
- Binary evolution modelling is an ongoing effort which needs community input.

