Lidia Oskinova

Escape of Ly radiation from stochastic medium

Orion Nebula ESO/Hawk

We have a problem with <f_{esc}> Universe spent more ph than can be accounted for

OB-type stars Lidia Oskinova

Double check: is there a problem?

SMC's WING $Z=0.14Z_{\odot}$ typical low-Z irregular dwarf

Credit: The Australian Square Kilometre Array Pathfinder, Australian National University

Shenar+ 12, Ramanchandran+ 18

SMC AB8 WO+O4 Q(H) = $2 \ 10^{50}$ N(H)~ 10^{21} s^{-1}

supergiant shell - 600 pc diameter in the SMC

Lidia Oskinova

 $H\alpha + [OIII] + X - ray$

O3V star Q(H)=10⁴⁹ s¹ N(HI)=2e21cm⁻¹

QSO z=2.43 N(HI)=2e21cm⁻¹

Even SMC Wing: too high N(H)

Credit: HST/ESA, A. Nota

Reducing opacity: bubbles → superbubble

Reducing opacity: bubbles → superbubble

Clumpy shells Blowouts

The escape of ionizing photons from OB associations (Dove+ 00)

Superbubble shells attenuate ionizing photons

Reducing opacity: stochastic medium & porosity

3-D stochastic radiative transfer (Oskinova etal 2004, 2-D)

Effective opacity: the product of

80

• number of clumps per V $n(r)/r^2$ [cm⁻³]

 $\kappa_{\rm eff} = n(r)$

Reducing opacity: stochastic medium & porosity

3-D stochastic radiative transfer (Oskinova etal 2004, 2-D)

Effective opacity: the product of

09

• number of clumps per V $n(r)/r^2$ [cm⁻³]

• cross section of clumps σ [cm²]

 $\kappa_{\rm eff} = n(r)r^{-2}\cdot\sigma$

Reducing opacity: stochastic medium & porosity

3-D stochastic radiative transfer (Oskinova etal 2004, 2-D)

Effective opacity: the product of

10

• number of clumps per V $n(r)/r^2$ [cm⁻³]

• cross section of clumps σ [cm²]

• probability that a photon which hits a clump is absorbed $(1 - e^{-\tau_{clump}})$

 optical depth = integral over effective opacity

$$\kappa_{\rm eff} = n(r)r^{-2} \cdot \sigma \cdot (1 - e^{-\tau_{\rm clump}})$$

Reducing opacity: stochastic medium

Assuming: 1) average opacity at Ly edge $\chi = 10 \text{ pc}^{-1}$ 2) a clump is on average 100 times denser clumps with size > 0.01 pc are opitcally thick

Effective opacity depends only on geometrical distribution of clumps It becames small if the clump filling factor is small (how realistic?)

Blowouts!

Reducing opacity: feedback from massive stars

The complex LMC-N206 Ramachandran et al. (2017, 2018)

• SFR = $0.002 \, M_{\odot}/yr$ Cavity filled with X-rays (blue) • H II region: $H\alpha$ (red), [O III] (green) Young

clusters / associations LMC-N206 complex: HRD of the massivestar population (V < 16 mag) Tracks and isochrones from (Brott et al. 2011, Köhler et al. 2015)

- Massive stars are not co-eval
- Ages spread from
 0 30 Myr
- 3 stars with log L >
 6 are the youngest (<5 Myr) and most massive (60 80 M_☉)

Stellar-winds feedback: mechanic energy and momentum

Mechanical energy input by the winds: $L_{\text{mec}} = \frac{1}{2} \sum_i \dot{M}_i v_i^2$

• **50%** from the two WR stars • 30% from three earliest **O** stars Long-time average: comparable feedback from **SNe (rate** 2.2 Myr⁻¹)

Reducing opacity: OB associations creating chimneys

Energy stored in
X-ray gas (E.M. and T_X)
E_{kin} of Hα shells and H I
~5 10⁵¹ erg (Kavanagh et al. 2012)

Mechanical energy from stellar winds and SNe, accumulated over 30 Myr: higher by factor ~15 !

Energy sinks:

- radiative cooling: negligible
- Mass loading and turbulent mixing
- Leakage of hot gas and UV photons

Increasing output of ionizing photons

Top Heavy IMF Very massive stars (> $300\dot{M}_{\odot}$) Continous star formation

Schnurr+ 2007 WR star R145 M>300 $_{\odot}$ Shenar+ 2017 100M $_{\odot}$ +90M $_{\odot}$

Lidia Oskinova

30 Dor: HST/SPitzer/Chandra

New Sources

XMM-Newton EPIC mosaic

SMC is full of HMXBs and hot gas

SF increase

@ 40 Myr ago and 2 Myr ago

Observed Q(X)= $3 \ 10^{46} \text{ x SFR}$

Gilfanov+ 18, Oskinova in prep.

These hy appear just @ right time and place after the OBs and SNe carved the chimneys

New sources of ionizing photons

HST/Chandra NGC 5253 - large number of HMXBs (Oskinova in prep.)

New sources: ULXs in Haro 11

2 ULXs with $Ig(Q(X)) \sim 50$

HST/Chandra Haro 11 (Prestwich+ 15)

New sources: ULXs in Haro 11

2 ULXs - could be low mass stars! Outflows v=0.1c. Relativistic jets.

Pinto+ 15, Nature

On mice and men OR on local galaxies and first galaxies

Higher masses stars and black holes? Mirabel+, Sazonov+

Marchant+ 16

Do GW CHE progenitors exist in the observable Universe?

PoWR synthetic
 spectra at key
 evolutionary stages

 Spectral Types and X-ray luminosities

Feedback

Hainich+ 2018

- Time increases from bottom to top : UV strong metal lines
 - **O**3V log $\dot{M} = 10^{-6}$
 - **O3I** $\log \dot{M} = 10^{-5.6}$
 - WN2 $\log \dot{M} = 10^{-5}$
 - WN2 $\log \dot{M} = 10^{-3.5}$
 - WO1 $\log \dot{M} = 10^{-5}$

WN+BH Q(X)= 10^{49} s^{-1}

22

Massive Star Association

ionization

stellar winds

turbulence fragmentation compression

Massive Star Association

ionization

stellar winds

turbulence fragmentation compression

Massive Star Association

ionization

star iormation

star formation

metals and Ly photon leakage Labyrinth exit thru the chimney

> turbulence fragmentation compression

Massive Star stellar winds Association

star formation

star formation

Lidia Oskinova

supernova cosmic rays

Reducing opacity

Clumping: may not be sufficient Blow-outs and chimneys: effective after first SNe

Increasing Output

Continous star formation Heating and ionization by HMXBs

Finding new sources in First galaxies Heavier BHs

ULXs and HLXses: higher X-ray fluxes per SFR Heating of the IGM