The emerging phase of YSCs: constraints for LyC photon leakage from HII regions in NGC7793

Lorenza Della Bruna

A. Adamo, G. Östlin, A. Bik, A. Fox, M. Fumagalli

The role of YSCs as source of stellar feedback

Chandra HST Spitzer

The role of YSCs as source of stellar feedback

Chandra HST Spitzer

http://chandra.harvard.edu

NGC 7793

- d = 3.4 Mpc
- MUSE: λ = 4600 9350 Å, seeing ~ 0.7" (10 pc)

HST

ALMA

MUSE AO science verification (PI A. Adamo)

- Stellar continuum subtraction with pPXF [Cappellari and Emsellem 2004]:
 - eMILES SSPs (Z = -2.32 0.22, age = 60 Myr 18 Gyr).

- Stellar continuum subtraction with pPXF [Cappellari and Emsellem 2004]:
 - eMILES SSPs (Z = -2.32 0.22, age = 60 Myr 18 Gyr).
- Emission lines fitting:
 - gaussian templates
 - tessellation to weakest line of interest.

- Stellar continuum subtraction with pPXF [Cappellari and Emsellem 2004]:
 - eMILES SSPs (Z = -2.32 0.22, age = 60 Myr 18 Gyr).
- Emission lines fitting:
 - gaussian templates
 - tessellation to weakest line of interest.
- Reddening correction with Pyneb [Luridiana et al. 2014].

Halpha line- and velocity map

HII regions selection

 ASTRODENDRO—> tree representing the hierarchy of structures in the data

http:// dendrograms.org

104 leaves

67 leaves

HII regions selection

Properties of the HII regions: ionisation parameter mapping

Properties of the HII regions: ionisation parameter mapping

 $L(H\alpha) = 2.3 \times 10^{38} \text{ erg/s}$

13

 $L(H\alpha) = 2.3 \times 10^{38} \text{ erg/s}$

 $M_{tot,\,GMC}=2.2E{+}05~{\rm M}_{\odot}$

$L(H\alpha) = 1.0 \times 10^{38} \text{ erg/s}$

$L(H\alpha) = 1.0 \times 10^{38} \text{ erg/s}$

- SII/OIII = 0.5 2.5 - 2.0 1 YSC, age = 3 Myr - 0.5 $M_{YSC} \sim 1000 \text{ M}_{\odot}$ $M_{tot, GMC} = 3.3\text{E}+04 \text{ M}_{\odot}$

$L(H\alpha) = 2.2 \times 10^{38} \text{ erg/s}$

- SII/OIII = 0.5 2.5

- 2.0

15 IIS]/all)

13 YSCage = 1-5 Myr $M_{\rm YSC}$ \sim 1000 M $_{\odot}$ $M_{tot,\,GMC}=2.8\mathrm{E}{+}05~\mathrm{M}_{\odot}$

$L(H\alpha) = 2.2 \times 10^{38} \text{ erg/s}$

- SII/OIII = 0.5

2.5

- 2.0

15 IIS]/all)

13 YSCage = 1-5 Myr $M_{YSC} \sim 1000 \text{ M}_{\odot}$ $M_{tot, GMC} = 2.8\text{E}+05 \text{ M}_{\odot}$

 $L(H\alpha) = 2.0 \times 10^{38} \text{ erg/s}$

- SII/OIII = 0.5 2.5 • - 15 10 10 f(IIS]/

- 2.0

 $L(H\alpha) = 2.0 \times 10^{38} \text{ erg/s}$

- SII/OIII = 0.5 5 YSCage = 3-5 Myr

 $M_{YSC} \sim 1000 - 3000 \,\mathrm{M}_{\odot}$ $M_{tot, GMC} = 7.3E+05 \,\mathrm{M}_{\odot}$ 2.5

- 2.0

- 15 10 10 f(IIS]/

 $L(H\alpha) = 2.0 \times 10^{38} \text{ erg/s}$

DIG fraction

- $f_{DIG} = F(H\alpha)_{HII} / F(H\alpha)_{outside}$
- f_{DIG} ~ 0.61 (Hα/SII-selected HII regions)
 f_{DIG} ~ 0.53 (Hα-selected HII regions)
- Distribution of DIG spaxels:

Conclusion and future work

• We select a sample of HII regions and investigate their ionisation structure using IPM, finding evidence for LyC leaking in at least 2 of the regions

• Next:

• qualitative estimate of the total fesc

Pellegrini+ 2012

$$\langle f_{\rm esc} \rangle = \frac{\sum_i L_{\rm esc,i}}{\sum_i (L_{\rm esc,i} + L_i)}$$

$$L_{\rm esc} = \sum_{i} \left(L_i \times \frac{f_{\rm esc,i}}{1 - f_{\rm esc,i}} \right)$$

• More quantitatively: YSCs as source of DIG ionization?

$$Q(H_0)_{expected} \longrightarrow Q(H_0)_{observed} \propto L(H\alpha)$$

Backup slídes

Estimation of fesc, gal

$$f_{\rm esc,gal} = (L_{\rm esc} - L_{\rm DIG})/L_{\rm tot}$$

$$L_{\rm esc} = \sum_{i} \left(L_i \times \frac{f_{\rm esc,i}}{1 - f_{\rm esc,i}} \right)$$

total HII regions "escape luminosity"

$$L_{tot} = L + L_{esc}$$

... + contribution from massive field stars

HII regions selection

- Parameters:
 - tree constructed down to 3.7 σ_{bkg}
 - two structures merged when their peak values are < 0.6 σ_{bkg} apart.

http:// dendrograms.org