

Hot-star atmospheres with winds: the "standard model"
Basic assumptions

- Spherical symmetry
- Stationarity
- Radiative equilibrium $\rightarrow T(r)$
- Clumping in the small-scale limit
- Pre-specified wind-velocity law
i.e. not hydrodynamically self-consistent

Free parameters

$T_{*} \quad$ Effective temperature
$L \quad$ Luminosity (implies R_{*} via Stefan-Boltzmann)
$\log g \quad$ photospheric gravity (implies stellar mass)
$X_{i} \quad$ Chemical composition: mass fractions of $\mathrm{H}, \mathrm{He}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Fe}$.
Wind parameters:
$\dot{M} \quad$ Mass-loss rate
$v_{\infty} \quad$ Terminal wind velocity
$D \quad$ Clump density contrast $=$ inverse filling factor

Non-LTE (no Local Themodynamical Equilibrium)

Rate Equations (Statistical Equilibrium)
Symbolically: linear mapping Λ Set of linear eqns. at each spatial point

$$
\begin{aligned}
& \text { Radiative transition rates: } \\
& \text { frequency integrals }
\end{aligned} R_{l u}=\int \frac{4 \pi}{h v} \sigma_{l u}(v) J_{v} \mathrm{~d} v
$$

\rightarrow Non-linear, fully coupled in space and frequency
Solution by Iteration with Approximate Lambda Operators (ALI)

Non-LTE model atmospheres for hot stars

TLUSTY (Hubeny \& Lanz)

- Plane-parallel, without stellar wind

CMFGEN (Hillier)

- Spherical and with wind, i.e. applicable for any hot stars (WR, O,

B, CSPN ...)

- Public code

PoWR (Potsdam Wolf-Rayet model atmospheres; Hamann et al.)

- Spherical and with wind, i.e. applicable for any hot stars (WR, O, B, CSPN ...)
- Many models accessible via a web interface: http://www.astro.physik.uni-potsdam.de/PoWR
- Non-standard options: macro-clumping; consistent hydrodynamic solution

FASTWIND (Puls)

- Approximative; not for UV

lonizing flux from \mathbf{O} stars

Right: $\mathrm{Q}_{0}=$ number of photons per second in the Lyman Continuum (LyC), i.e. with
$\lambda<911 \AA$

Series of PoWR models at main sequence
\rightarrow Strong dependence on stellar (effective) temperatures

lonizing flux from O stars

Right: $\mathrm{Q}_{0}=$ number of photons per second in the Lyman Continuum (LyC), i.e. with $\lambda<911 \AA$

Series of main sequence models, $\mathrm{T}_{*}=40 \mathrm{kK}$, different metallizities (Galactic, LMC, SMC)
\rightarrow No significant dependence on metallicity Z

lonizing flux from 0 stars

\rightarrow LyC roughly proportional to luminosity
\rightarrow Stronger Lyman jump with higher $\log \mathrm{g}$

Series of models:

- same $\mathrm{T}_{\star}=40 \mathrm{kK}$
- different $\log g$ (luminosity class)
- mass from evolutionary tracks

lonizing flux from WN stars

\rightarrow Nearly all flux in the LyC
\rightarrow No Lyman edge (H-free!)
$\rightarrow \log Q_{0}\left[\mathrm{~s}^{-1}\right]=50.0$

SED for the very luminous Galactic WNE star WR 18
$-\mathrm{T}_{*}=112 \mathrm{kK}\left(\mathrm{T}_{2 / 3}=69 \mathrm{kK}\right)$
$-\log \mathrm{L} / \mathrm{L}_{\circ}=6.11$
$-\log \dot{M}\left[M_{\odot} / y r\right]=-4.1$

Wolf-Rayet stars at low metallicity

Small Magellanic Cloud (SMC)

- Discrete symbols: analyzed WR stars (Hainich et al. 2015)
\rightarrow ALL WN stars in the SMC contain hydrogen (like Galactic WNL), but are hot and compact (like Galactic WNE)
- Evolutionary tracks (very strong rotational mixing, $\mathrm{Z}=0.14 \mathrm{Z}_{\circ}$) (Brott et al. 2011) \rightarrow nearly homogeneous!

Metallicity dependence of WR mass-loss rates

Large samples of WN stars from

- Small Magellanic Cloud (SMC)
- Large Magellanic Cloud (LMC)
- Milky Way
- Andromeda Galaxy (M31)

$$
\dot{M}_{\mathrm{WR}}=f\left(L, T_{*}, X_{\mathrm{He}}, Z\right)
$$

$\dot{M}_{\mathrm{WR}} \propto Z^{1.2}$
For O stars (Mokiem et al. 2007):
$\dot{M}_{\mathrm{O}} \propto Z^{0.8}$
\rightarrow Z-dependence for WR even steeper than for O stars \leftarrow Hainich et al. (2015

Line-driven stellar winds

- Wind transparent in continuum, opaque in many lines
- Absorption from ~ radial direction; reemmission isotropic
- Acceleration \rightarrow velocity \rightarrow Doppler shift of the line
- Photons from a whole frequency band Δv are swept up
- Driving by > 100 lines \rightarrow mass-loss dominates evolution

How are Wolf-Rayet winds driven?

Often: $L / c<\dot{M} v_{\infty}$
\rightarrow mass loss exceeds single-scattering limit
\rightarrow Multiple scattering can drive WR winds Gräfener \& Hamann $(2005,2008)$

Wolf-Rayet stars at low metallicity

Low mass loss \rightarrow low angular momentum loss
Rapid rotation \rightarrow strong mixing \rightarrow homogeneous evolution
All WN in the SMC are very hot and compact \rightarrow strong LyC emission!

Star	$\log Q_{0}$
AB 1	49.94
AB 2	49.40
AB 4	49.61
AB 9	49.90
AB 10	49.50
AB 11	49.72
AB 12	49.73

How can a star get rid of its hydrogen-rich envelope?

- by Roche-lobe overflow in a close binary system (original idea, e.g. Paczynski 1967)
- by stellar-wind mass loss (the Conti scenario, Conti 1975)

Massive stars in binaries (e.g. WR+O)

Massive overcontact binary (MOB) evolution

New scenario
(Marchant et al. 2016):

- Two massive stars
born as tight binary
Evolve fully mixed
due to tidally induced
fast spin
Swap mass several times, leading to about equal masses
Can avoid early merging
- At low metallicity, can produce a close pair of BHs
\leftarrow Hainich et al. (2017)

Hot massive stars: their possible natures

- Massive main-sequence stars
- Very massive supergiants avoiding Red Super Giant (RGS) phases
- Post-RSG stars having lost their envelope by winds (works best at high metallicities)
- Very massive stars at low Z undergoing homogeneous evolution (works best at low metallicities)
- Massive stars in close binaries which lost their envelope by Roche Lobe Overflow (all metallicities)
- Very tight binaries: "Massive Overcontac Binary (MOB) evolution" (theoretical suggestion, not yet observed)

Young stellar populations

Example 1: starforming complex
LMC-N206
Spectral
analysis of the
massive-star
population
(Ramachandran
et al. 2018a,b)

- $1 \mathrm{WN}+\mathrm{O}$
- 1 WC+O
- 9 Of
- 31 O (other)
- 125 B
- $18 \mathrm{Oe} / \mathrm{Be}$
-17 A
- 2 HMXB: disproved

LMC-N206
HRD of the massive star population ($\mathrm{V}<16 \mathrm{mag}$)
Tracks and isochrones: Brott et al.
2011, Köhler et al. 2015

- Massive stars are not co-eval
- Ages spread from 0-30 Myr
- 3 stars with $\log L$ > 6 are the youngest (<5 Myr) and most massive (60 $80 M_{\circ}$)

LMC-N206: sources of ionizing radiation

Young stellar populations

Example 2: Massive stars in the Tarantula Nebula (LMC)

Census of ~1000
massive stars
(Doran et al. 2013)
$\rightarrow 40 \%$ of LyC from 31 WR and early
O-type stars

Young stellar populations

Example 3.
Supergiant shell
SMC-SGS 1
(Ramachandran et
al. in prep.)

- Low star-
formation density
- Stellar ages:

0 ... 100 Myr

- Star formation peaked 25 Myr ago

SMC-SSG 1: sources of ionizing radiation
How many high-Q stars exist? The initial mass function (IMF)

He III regions and the sources of their ionization

Project with M. Pakull

Observation:
Nebula with diffuse He II $4686 \AA$
(narrow) line emission
Question:
Which stars produce large amounts of photons $\lambda<228 \AA$?

He III regions found around Wolf-Rayet stars:

Galaxy	\# of He III neb. \# of all WRs	
MW	1	300
LMC	2	150
SMC	3	12

\rightarrow Fraction seems to increase with decreasing metallicity
He II $4686 \AA$ emission from I Zw $18\left(Z / Z_{\odot}=0.02\right)$
Broad-slit spectra:

$\lambda 4686$ Kehrig
\square

HST Ha

$H \beta \quad \lambda 4686$
,
lonizing flux from old stellar populations

e.g.: hydrogen-deficient postAGB stars: central stars of planetary nebulae of type [WC]
Example: SED for the central star of NGC 5189 (red)

- $\mathrm{T}_{*}=160 \mathrm{kK}$
$-\log L / L_{\odot}=3.7$
$-\log \dot{M}\left[M_{\odot} / y r\right]=-7.2$
- Compared to the very luminous Galactic WNE star WR 18 (blue)
\rightarrow Nearly all flux in the LyC
\rightarrow No Lyman edge (H-free!)
$\rightarrow \log \mathrm{Q}_{0}\left[\mathrm{~s}^{-1}\right]=47.5$
\rightarrow Many He II ionizing photons: $\log Q_{\text {HeII }}\left[s^{-1}\right]=46.5$

Conclusions

- The hottest and most luminous massive stars emit per second up to 10^{50} hydrogen ionizing photons
- In a young stellar population, ~1 out of 100 massive stars might fall into that category; this $\sim 1 \%$ typically produce more than half of all LyC photons
- The fraction of very LyC-bright stars might increase at low metallicities due to quasi-homogeneous evolution of high-mass stars
- Very rare stars with $\mathrm{T}_{*}>100 \mathrm{kK}$ can emit up to $10^{48.5}$ photons at $\lambda<228 \AA$ (He II ionizing)
- Post-AGB stars can become very hot and emit up to $\log Q_{0}\left[s^{-1}\right] \sim 47.5$ in LyC, and up to $10^{46.5} \mathrm{He} \mathrm{II}$ ionizing photons/s, especially if hydrogen-deficient

