Surface effects in solar-like oscillators

Warrick Ball

Laurent Gizon, Benjamin Beeck, Robert Cameron

Institute for Astrophysics Göttingen Max Planck Institute for Solar System Research

Seismology of the Sun and Distant Stars 2016 12th July 2016

INSTITUT FÜR ASTROPHYSIK GÖTTINGEN

The problem

What is the surface effect?

Why is it a problem?

What causes it?

basically, poor modelling of near-surface convection see Rosenthal (1997)

(c.f. Böhm-Vitense 1958)

3D RHD simulations (e.g. review by Nordlund et al. 2009)

What causes it?

Rosenthal (1997)

• "model" physics:

(everything missing from background model)

- MLT gives inaccurate temperature gradient
- no turbulent pressure
- atmospheric structure
- etc...

• "modal" physics:

(everything missing from oscillation calculation)

- perturbation to turbulent
 pressure (Rosenthal et al. 1999)
- flows modify wave speeds (Brown 1984)
- non-adiabaticity (Houdek 1996)
- etc...

Parametrizations

CORRECTING STELLAR OSCILLATION FREQUENCIES FOR NEAR-SURFACE EFFECTS

HANS KJELDSEN,¹ TIMOTHY R. BEDDING,² AND JØRGEN CHRISTENSEN-DALSGAARD¹ Received 2008 February 4; accepted 2008 July 9; published 2008 July 28

$$\nu_{\rm obs}(n) - r\nu_{\rm mdl}(n) = a \left[\frac{\nu_{\rm obs}(n)}{\nu_0}\right]^b$$

$$r = (b-1) \left[b \frac{\nu_{\rm mdl}}{\nu_{\rm obs}} - \frac{\Delta \nu_{\rm mdl}}{\Delta \nu_{\rm obs}} \right]^{-1} \approx \left(\frac{\bar{\rho}_{\rm mdl}}{\bar{\rho}_{\rm obs}} \right)^2$$

A new correction of stellar oscillation frequencies for near-surface effects

W. H. Ball¹ and L. Gizon^{2,1}

from asymptotic behaviour of eigenfunctions near surface + sound speed or H_p perturbation

"cubic" term:

$$\nu_{\rm obs} - \nu_{\rm mdl} = a_3 \nu^3 / \mathcal{I}$$

"combined" term:

$$\nu_{\rm obs} - \nu_{\rm mdl} = (a_{-1}\nu^{-1} + a_3\nu^3)/\mathcal{I}$$

c.f. Gough (1990)

cubic term also in Libbrecht & Woodard (1990) and Goldreich et al. (1991)

Surface-effect corrections for solar-like oscillations using 3D hydrodynamical simulations

I. Adiabatic oscillations

T. Sonoi¹, R. Samadi¹, K. Belkacem¹, H.-G. Ludwig^{2,3}, E. Caffau³, and B. Mosser¹

Power law correction

Kjeldsen et al. (2008)

Cubic correction

Ball & Gizon (2014)

Combined correction

Ball & Gizon (2014)

Modified Lorentzian correction

Sonoi et al. (2015)

Astronomy Astrophysics

The ratio of small to large separations of acoustic oscillations as a diagnostic of the interior of solar-like stars

I. W. Roxburgh^{1,2} and S. V. Vorontsov^{1,3}

$$r_{02}(n) = \frac{\nu_{n,0} - \nu_{n-1,2}}{\nu_{n,1} - \nu_{n-1,1}}$$
$$r_{13}(n) = \frac{\nu_{n,1} - \nu_{n-1,3}}{\nu_{n+1,0} - \nu_{n,0}}$$

$$r_{01}(n) = \frac{1}{8} \frac{\nu_{n-1,0} - 4\nu_{n-1,1} + 6\nu_{n,0} - 4\nu_{n,1} + \nu_{n+1,0}}{\nu_{n,1} - \nu_{n-1,1}}$$
$$r_{10}(n) = -\frac{1}{8} \frac{\nu_{n-1,1} - 4\nu_{n,0} + 6\nu_{n,1} - 4\nu_{n+1,0} + \nu_{n+1,1}}{\nu_{n+1,0} - \nu_{n,0}}$$

The ratio of small to large separations of acoustic oscillations as a diagnostic of the interior of solar-like stars

I. W. Roxburgh^{1,2} and S. V. Vorontsov^{1,3}

$$r_{02}(n) =$$

 $r_{13}(n) =$ $r_{13}(n) =$ $r_{13}(n) =$ $r_{13}(n) =$ $r_{13}(n) =$

$$r_{01}(n) = \begin{cases} five-point difference \\ large separation \end{cases}$$

(also visit Roxburgh's poster comparing his various methods)

Separation ratios

Roxburgh & Vorontsov (2003)

State of the art

- Parametrizations
 - ratios widely used and presumably reliable
 - "combined" term appears the best formula
 - Sun is still the only real test

Schmitt & Basu (2015)

Three-dimensional radiation hydrodynamics

Three-dimensional simulations of near-surface convection in main-sequence stars*

B. Beeck^{1,2}, R. H. Cameron¹, A. Reiners², and M. Schüssler¹

G2V

F3V

K0V

1⁵ x [Mm]

Convective contributions to the frequencies of solar oscillations

C.S. Rosenthal^{1,*}, J. Christensen-Dalsgaard^{1,2}, Å. Nordlund^{3,4}, R.F. Stein⁵, and R. Trampedach^{1,2}

Models of solar surface dynamics: impact on eigenfrequencies and radius

L. Piau,¹* R. Collet,² R. F. Stein,³ R. Trampedach,⁴ P. Morel⁵ and S. Turck-Chièze⁶

Surface-effect corrections for the solar model

A&A 583, A112 (2015) DOI: 10.1051/0004-6361/201526838 © ESO 2015

Surface-effect corrections for solar-like oscillations using 3D hydrodynamical simulations

I. Adiabatic oscillations

T. Sonoi¹, R. Samadi¹, K. Belkacem¹, H.-G. Ludwig^{2,3}, E. Caffau³, and B. Mosser¹

CESTAM + CO⁵BOLD

MESA meets MURaM

Surface effects in main-sequence solar-like oscillators computed using three-dimensional radiation hydrodynamics simulations

W. H. Ball^{1,2}, B. Beeck², R. H. Cameron², and L. Gizon^{2,1}

(A&A accepted, arXiv:1606.02713)

MESA + MURaM

Simulation parameters

Sonoi et al. (2015), Ball et al. (2016)

Solar-calibrated model (Model S)

Ball et al. (2016)

All four models

Ball et al. (2016)

State of the art

- Parametrizations
 - ratios widely used; phase-matching very new
 - "combined" term appears the best formula
 - Sun is still the only real test
- 3D RHD simulations
 - "patching" models seems reliable
 - results are robust
 - currently limited to structural effects

The future

The future

- Make more of the 3D RHD simulations
 - "modal" physics: flows, non-adiabaticity, etc.
 - calibrating mixing length parameter helps too

The future

- Make more of the 3D RHD simulations
 - "modal" physics: flows, non-adiabaticity, etc.
 - calibrating mixing length parameter helps too
- Push observations to lower radial order
 - best nominal Kepler data almost there
 - velocity data from SONG

Additional slides

Combining models

Combining models

CORRECTING STELLAR OSCILLATION FREQUENCIES FOR NEAR-SURFACE EFFECTS

HANS KJELDSEN,¹ TIMOTHY R. BEDDING,² AND JØRGEN CHRISTENSEN-DALSGAARD¹ Received 2008 February 4; accepted 2008 July 9; published 2008 July 28

$$\nu_{\rm obs}(n) - r\nu_{\rm mdl}(n) = a \left[\frac{\nu_{\rm obs}(n)}{\nu_0}\right]^b$$

Asteroseismic model fitting by comparing $\epsilon_{n\ell}$ values

Ian W. Roxburgh

$$\epsilon_{\ell}^{\text{obs}}(\nu) = \nu / \Delta \nu^{\text{obs}} - n - \ell / 2$$

$$\epsilon_{\ell}^{\text{mdl}}(\nu) = \nu / \Delta \nu^{\text{mdl}} - n - \ell / 2$$

$$\mathcal{E}(\ell, \nu) = \epsilon_{\ell}^{\text{mdl}}(\nu) - \epsilon_{\ell}^{\text{obs}}(\nu)$$

$$\chi^{2} = \frac{1}{N_{\rm obs} - M} \sum^{N_{\rm obs}} \left(\frac{\mathcal{E}(\ell, \nu_{n\ell} {}_{n\ell}^{\rm obs}) - \mathcal{F}(\nu_{n\ell}^{\rm obs})}{\sigma_{n\ell}/\Delta\nu} \right)^{2}$$

 $\mathcal{F}(\nu)$ is an *M*-degree polynomial

see also Roxburgh (2015; A&A 574, A45)

Epsilon matching

Epsilon matching

Fig. 3. Superposed curves for the outer phase shifts $\alpha_{\ell}(v, t)$ of Model A at 3 frequencies. The values of α_{ℓ} are independent of ℓ until deep inside the star.

THE ASTROPHYSICAL JOURNAL, 342: L95–L98, 1989 July 15 © 1989. The American Astronomical Society. All rights reserved. Printed in U.S.A.

TOPOLOGY OF CONVECTION BENEATH THE SOLAR SURFACE

R. F. STEIN Department of Physics and Astronomy, Michigan State University

AND

Å. NORDLUND Copenhagen University Observatory Received 1989 March 9; accepted 1989 April 14

FIG. 1.—Simulated snapshots of integrated radiation surface intensity. These approximate monochromatic continuum intensity snapshots. Each snapshot is 6×6 Mm ($8'' \times 8''$). The sequence, spanning 12 minutes, approximates a 6×24 Mm image of the Sun.

Non-local convection and non-adiabaticity

Lower radial order with SONG?

Comparing parametrizations: G2

Comparing parametrizations: F3

Solar oscillations

Sun (VIRGO)

Echelle diagram

16 Cyg A (Kepler)

Displacement eigenfunctions

Displacement eigenfunctions

Simulation	F3V	G2V	K0V	K5V	M0V	M2V
Box height [Mm]	9	3	1.8	1.5	0.9	0.8
above z_0^a	1.57	0.95	0.48	0.41	0.25	0.21
below z_0	7.43	2.05	1.32	1.09	0.65	0.59
# of pressure scale heights	13.1	14.0	13.2	15.3	14.8	14.5
above z_0	6.9	8.6	7.1	9.1	8.4	7.8
below z_0	6.2	5.4	6.2	6.4	6.4	6.8
$H_{\rm p}$ at z_0 [km]	500	200	90	65	38	35
Δz^{b} [km]	11.25	10	6	5	4	3.2
$\min(H_p)/\Delta z$	18.1	10.0	9.57	7.87	6.53	7.19
Horizontal box size [Mm]	30	9	6	4	2.5	1.56
$\Delta x, \Delta y^c$ [km]	58.6	17.6	11.7	7.81	4.88	3.05
$\Delta x/\Delta z$	5.21	1.76	1.95	1.56	1.22	0.953

B. Beeck et al.: 3D simulations of near-surface convection in main-sequence stars. I.

Table 2. Box sizes and grid resolutions.

Notes. ^(a) $z_0 = \langle z(\tau_R = 1) \rangle$; ^(b) Δz is the vertical grid resolution; ^(c) Δx and Δy are the horizontal grid resolution; in all simulations considered here, $\Delta x = \Delta y$ was chosen.

GAIA

PLATO

Solar Oscillations Network Group

 $T_{\rm eff} = 6725 \,\mathrm{K}$ $\log g = 4.25$

 $T_{\rm eff} = 5775 \,\mathrm{K}$ $\log g = 4.44$