On the internal gravity waves generated by penetrative convection: effect on the internal rotation of low-mass stars

Charly Pinçon

with the collaboration of K. Belkacem and M. J. Goupil
Asteroseismology probes the stellar internal rotation

- Solid-body rotation observed in the solar radiative interior (e.g. Garcia, 2007)
- A lot of observations for evolved stars with CoRoT (2006-2014) and Kepler (2009)
Asteroseismology probes the stellar internal rotation

- Solid-body rotation observed in the solar radiative interior (e.g. Garcia, 2007)
- A lot of observations for evolved stars with CoRoT (2006-2014) and Kepler (2009)

- Core rotation ↓ during the evolution on the RGB to the Red Clump
- … while it strongly contracts until helium fusion starts (Red Clump).
- In agreement with low rotation rates observed in white dwarfs (Kawaler et al., 1999).
Asteroseismology probes the stellar internal rotation

- Solid-body rotation observed in the solar radiative interior (e.g. Garcia, 2007)
- A lot of observations for evolved stars with CoRoT (2006-2014) and Kepler (2009)
- Core rotation \downarrow during the evolution on the RGB to the Red Clump
 ... while it strongly contracts until helium fusion starts (Red Clump).
- In agreement with low rotation rates observed in white dwarfs (Kawaler et al., 1999).

⇒ involves angular momentum transport from the core to the envelope
Asteroseismology probes the stellar internal rotation

- Solid-body rotation observed in the solar radiative interior (e.g. Garcia, 2007)
- A lot of observations for evolved stars with CoRoT (2006-2014) and Kepler (2009)
- Core rotation ↓ during the evolution on the RGB to the Red Clump
 … while it strongly contracts until helium fusion starts (Red Clump).
- In agreement with low rotation rates observed in white dwarfs (Kawaler et al., 1999).

⇒ involves angular momentum transport from the core to the envelope
⇒ Problem: current stellar models do not reproduce the observations…
Internal gravity waves

- **Internal Gravity Waves (IGW):**
 - Restoring force = buoyancy
 - Excited in the convective zone
 - Propagate in the radiative zone

- **Efficiency of the transport of AM by IGW**
 - depends on the driving mechanism

- **Difficult point:**
 - Current simulations not realistic enough (Re, Pe numbers...)

⇒ Estimate by semianalytical models
Excitation mechanisms

- 2 kinds of excitation mechanisms
- Excitation by turbulent pressure in the convective bulk
 \- Kumar et al. (1999) ⇒ rigid solar rotation (Talon, 2002)
 ⇒ insufficient for Red Giants (Fuller, 2014)

3-D Simulations of the Sun (Alvan et al., 2014)
Excitation mechanisms

- 2 kinds of excitation mechanisms

- Excitation by turbulent pressure in the convective bulk
 - Kumar et al. (1999) \(\Rightarrow\) rigid solar rotation (Talon, 2002)
 \(\Rightarrow\) insufficient for Red Giants (Fuller, 2014)

- Excitation by penetration of convective plumes
 - observed in geophysics (e.g. Townsend, 1966) and numerical simulations (e.g. Dintrans, 2005)
 - But a model is still missing for stellar interior

\(\Rightarrow\) Are the plume-induced waves able to play a role and to be included in stellar models?
Excitation model by penetrative convection

- Wave equation + source term = pressure exerted by an ensemble of incoherent and spatially uniformly distributed plumes at the base of the convective zone

\[
\frac{\partial \vec{v}}{\partial t} + \frac{1}{\rho} \nabla p' - \frac{\rho'}{\rho} \vec{g} = - \frac{1}{\rho} \nabla (\rho \vec{V}_p \otimes \vec{V}_p)
\]

- Plumes description in the driving region:
 - Velocity and width (Rieutord & Zahn, 1995 ; Zahn, 1991)
 - Free parameters: - plume lifetime (~convective time by the MLT)
 - filling factor $A \sim 0.1$ (number of plumes)

(Pinçon, Belkacem, Goupil, 2016a)
Excitation model by penetrative convection

- **Wave equation + source term** = pressure exerted by an ensemble of incoherent and spatially uniformly distributed plumes at the base of the convective zone

\[
\frac{\partial \vec{V}}{\partial t} + \frac{1}{\rho} \nabla p' - \frac{\rho'}{\rho} \vec{g} = -\frac{1}{\rho} \nabla (\rho \vec{V}_p \otimes \vec{V}_p)
\]

- **Plumes description in the driving region**:
 - **Velocity and width** (Rieutord & Zahn, 1995; Zahn, 1991)
 - **Free parameters**:
 - plume lifetime (~convective time by the MLT)
 - filling factor \(A \sim 0.1 \) (number of plumes)

- **Excitation process in the Sun** (Pinçon, Belkacem, Goupil, 2016a)
 - Up to 5 times more efficient than turbulent pressure
 - Total wave energy flux ~ 1 % of the solar flux at the base of the convective zone

⇒ **Ability to transport angular momentum?**
Ability to transport angular momentum in the Sun

- Estimate of the effect of IGW on a given rotation profile

$T_L \sim \frac{\dot{J}}{J}$

Density of angular momentum $\rho r^2 \Omega$

Divergence of the radiatively damped wave flux

Local characteristic timescale on which IGW modify the rotation

\Rightarrow To compare to the characteristic timescale of evolution/contraction \Rightarrow efficiency?
Ability to transport angular momentum in the Sun

- Estimate of the effect of IGW on a given rotation profile

 Local characteristic timescale on which IGW modify the rotation
 \[T_L \approx \frac{\rho r^2 \Omega}{\text{Divergence of the radiatively damped wave flux}} \]
 \[J \]

 To compare to the characteristic timescale of evolution/contraction \(\Rightarrow \) efficiency?

- In the Sun, plume-induced IGW

 (Pinçon et al., 2016)
Ability to transport angular momentum in the Sun

- Estimate of the effect of IGW on a given rotation profile

 Local characteristic timescale on which IGW modify the rotation

 \[T_L \sim J/J \]

 Density of angular momentum \(\rho r^2 \Omega \)

 Divergence of the radiatively damped wave flux

 \(T_L \) to compare to the characteristic timescale of evolution/contraction \(\Rightarrow \) efficiency?

- In the Sun, plume-induced IGW

 - modify the rotation on timescales \(T_L < T_{\text{nuc}} \approx 10 \text{Gyr} \)

 - more efficient than Kumar et al. (1999)

 - the higher the differential rotation, the more efficient the transport

(Pinçon et al., 2016)
Ability to transport angular momentum in the Sun

- Estimate of the effect of IGW on a given rotation profile

- To compare to the characteristic timescale of evolution/contraction ⇒ efficiency?

- In the Sun, plume-induced IGW
 - modify the rotation on timescales $T_L < T_{\text{nuc}} \sim 10\text{Gyr}$
 - more efficient than Kumar et al. (1999)
 - the higher the differential rotation, the more efficient the transport

Figure:
- Divergence of the radiatively damped wave flux
- Density of angular momentum $\rho r^2 \Omega$
- Local characteristic timescale on which IGW modify the rotation

Graph:
- Plume-induced waves
- Turbulence-induced waves
- Low differential rotation
- Strong differential rotation
- Core
- Sun (Pinçon et al., 2016)

Equation:
- $T_L \sim \frac{J}{\dot{J}}$

- ✔ Estimate of the effect of IGW on a given rotation profile
- ✔ In the Sun, plume-induced IGW
- ✔ To compare to the characteristic timescale of evolution/contraction ⇒ efficiency?
Ability to transport angular momentum in the Sun

- Estimate of the effect of IGW on a given rotation profile

\[T_L \sim \frac{\dot{J}}{\Omega} \]

Density of angular momentum
\[\rho r^2 \Omega \]

Divergence of the radiatively damped wave flux

- To compare to the characteristic timescale of evolution/contraction => efficiency?

- In the Sun, plume-induced IGW

- modify the rotation on timescales \(T_L < T_{\text{nuc}} \approx 10\text{Gyr} \)

- more efficient than Kumar et al. (1999)

- the higher the differential rotation,
the more efficient the transport

In the Sun, plume-induced IGW

- modify the rotation on timescales \(T_L < T_{\text{nuc}} \approx 10\text{Gyr} \)

- more efficient than Kumar et al. (1999)

- the higher the differential rotation,
the more efficient the transport
Ability to transport angular momentum in the Sun

- Estimate of the effect of IGW on a given rotation profile

 Local characteristic timescale on which IGW modify the rotation

\[T_L \sim \frac{J}{\dot{J}} \]

- To compare to the characteristic timescale of evolution/contraction \(\Rightarrow \text{efficiency} \)?

- In the Sun, plume-induced IGW

 - modify the rotation on timescales \(T_L < T_{\text{nuc}} \approx 10\text{Gyr} \)
 - more efficient than Kumar et al. (1999)
 - the higher the differential rotation, the more efficient the transport

\(\Rightarrow \text{Process efficient in the Sun!} \)

What about Subgiants and Red Giants?

\(\text{Sun} \) (Pinçon et al., 2016)
From the subgiants branch to the ascent of the RGB

- Fuller et al. (2014)

- IGW cannot reach the core: strong radiative damping near the H-burning shell...
- ...BUT as for the Sun, not so simple: depends on excitation and differential rotation (via damping)
From the subgiants branch to the ascent of the RGB

- Fuller et al. (2014)
 - IGW cannot reach the core: strong radiative damping near the H-burning shell...
 - ...BUT as for the Sun, not so simple: depends on excitation and differential rotation (via damping)

- Calculations for several models on the subgiant and redgiant branches with IGW excited by penetrative convection

- Rotation profile for each model:
 - assumed smooth
 - different amplitudes for $\delta \Omega = \Omega_{\text{core}} - \Omega_{\text{BCZ}}$
2 examples: models M1 and M2
Red Giant (model M2)

The Red Giant case in a nutshell:

- Considering $0 < \delta \Omega < 12 \mu \text{rad s}^{-1}$ as in observed Red Giants (Mosser et al., 2012)

- $T_L > T_{\text{contraction}}$ in the core (below the H-burning shell)

 - Strong radiative damping near the H-burning shell (peak of the Brunt-Väisälä frequency)

 \Rightarrow For the RGB stars: strong radiative damping prevents IGW from modifying the core rotation, confirms Fuller et al.'s result

- ...BUT IGW damped just near the H-burning shell:

 - Interaction with meridional circulation in the core? \Rightarrow need for a complete calculation
Subgiant (model M1)

Characteristic timescale of contraction
Below the H-burning shell, $T_L > T_{\text{contraction}}$

Waves do not cross the barrier

Characteristic timescale of contraction

- Low differential rotation \Rightarrow Strong damping before the H-burning shell \Rightarrow IGW cannot overcome the « barrier »
Subgiant (model M1)

Below the H-burning shell, $T_L < T_{\text{contraction}}$

Waves cross the barrier

Characteristic timescale of contraction

- **Low differential rotation** \Rightarrow Strong damping before the H-burning shell
 \Rightarrow IGW cannot overcome the « barrier »

- **Progressive increase of $\delta\Omega$** \Rightarrow above $\delta\Omega > 4 \mu\text{rad \ s}^{-1}$, IGW cross the « barrier »
 \Rightarrow cf difference between prograde and retrograde waves with $\delta\Omega$

\Rightarrow It exists a threshold value for the differential rotation above which IGW can modify the core rotation!

(Pinçon et al., 2016)
A possible regulation loop in Subgiants

End of the main sequence $\delta\Omega_0$

Evolution, log g

Initial condition

Threshold $\delta\Omega_{\text{thresh}}$

$\delta\Omega < \delta\Omega_{\text{thresh}}$

Core contraction $\delta\Omega$

$\delta\Omega = \delta\Omega + \varepsilon$

$\delta\Omega = \delta\Omega - \varepsilon'$

$\delta\Omega > \delta\Omega_{\text{thresh}}$

IGW braking $\delta\Omega$

Dynamical equilibrium

\Rightarrow The system reaches a dynamical equilibrium: $\delta\Omega \sim \delta\Omega_{\text{thresh}}$

Subgiants branch $\delta\Omega \sim \delta\Omega_{\text{thresh}}$
A threshold close to the observations

- Observations of 6 subgiants 1Msun<M<1.45Msun (Deheuvels et al., 2014)
- Comparison with the threshold $\delta\Omega_{\text{threshold}}$ derived from stellar models?

(Pinçon et al. 2016b, in prep)
A threshold close to the observations

- Observations of 6 subgiants $1 \text{M}_{\odot} < M < 1.45 \text{M}_{\odot}$ (Deheuvels et al., 2014)

- Comparison with the threshold $\delta \Omega_{\text{threshold}}$ derived from stellar models?

- Amazing similarities between both
 - Same typical values
 - Decrease with $\log g$

 \Rightarrow observations in agreement with a regulation effect coming from IGW

- Some discrepancies: mass effect, assumed rotation profile, threshold selection criterion, meaning of the mean observed $\delta \Omega$ (rotational splittings)...

(Pinçon et al. 2016b, in prep)
Concluding remarks

- New excitation model of IGW by penetrative convection...

- ... with consequences for the extraction of angular momentum:

 - on the RGB: \(\Rightarrow \) IGW cannot reach the core (cf Fuller et al.)

 - on the subgiant branch: \(\Rightarrow \) IGWs generated by penetrative convection are a good candidate to regulate the core rotation
Concluding remarks

✔ New excitation model of IGW by penetrative convection…

✔ … with consequences for the extraction of angular momentum :

- on the RGB : IGW can not reach the core (cf Fuller et al.)

- on the subgiant branch : IGW generated by penetrative convection are a good candidate to regulate the core rotation

✔ Next steps :

- regulation in subgiants ⇒ promising and in progress (conservative?)

- role of IGW to be confirmed by means of a numerical resolution for the angular momentum transport (for example, on a static stellar model) and ...

- … to be implemented in a stellar evolution code with the interaction with other processes (in CESTAM with the collaboration of J. Marques, IAS)
Thank you for your attention!
From the subgiants branch to the ascent of the RGB

- **Fuller et al. (2014)**
 - *IGW cannot reach the core: strong radiative damping near the H-burning shell...*
 - *BUT as for the Sun, not so simple: depends on excitation and differential rotation (via damping)*

- Calculations for several models on the subgiant and redgiant branches with IGW excited by penetrative convection

- **Rotation profile for each model:**
 - *assumed smooth*
 - *different amplitudes for* \(\delta \Omega = \Omega_{\text{core}} - \Omega_{\text{BCZ}} \)

- Diagram showing the rotation profile with different amplitudes for \(\delta \Omega = \Omega_{\text{core}} - \Omega_{\text{BCZ}} \) for various masses. The range is given as \(0.5 < \delta \Omega < 12 \, \mu \text{rad s}^{-1} \).
Red Giant (model M2)

\(T_L > T_{\text{contraction}} \)

Waves do not cross the barrier

\(T_L \) increases going deeper and \(T_L > T_{\text{contraction}} \) in the core for all \(\delta \Omega < 12 \text{ \mu rad s}^{-1} \)

- Waves strongly damped near the H-burning shell (peak of the Brunt-Väisälä frequency)
- \(\delta \Omega < 12 \text{ \mu rad s}^{-1} \) in observed Red Giants (Mosser et al., 2012)

 ⇒ For the RGB stars: radiative damping prevents IGW from modifying the core rotation

- ...BUT IGW damped just near the H-burning shell:

 - Interaction with meridional circulation in the core? ⇒ need for a complete calculation