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 ⇒ involves angular momentum transport from the core to the envelope

 ⇒ Problem : current stellar models do not reproduce the observations…



Internal gravity waves

3-D Simulations of the Sun (Alvan et al., 2014)

Convective zone

Radiative Zone
 ⇒ IGW 

✔ Internal Gravity Waves (IGW ):

Restoring force =buoyancy
Excited in the convective zone
Propagate in the radiative zone

✔ Efficiency of the transport of AM by IGW
 
depends on the driving mechanism 

✔ Difficult point :

Current simulations not realistic enough (Re, Pe numbers…)

 ⇒ Estimate by semianalytical  models
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✔ Excitation by turbulent pressure in the convective bulk

Kumar et al. (1999)  rigid solar rotation (Talon, 2002)⇒
    ⇒ insufficient for Red Giants (Fuller, 2014)

✔ Excitation by penetration of convective plumes

observed in geophysics (e.g.Townsend, 1966) and 
numerical simulations (e.g. Dintrans, 2005)
But a model is still missing for stellar interior

 ⇒ Are the plume-induced waves able to play a role
    and to be included in stellar models ?



Excitation model by penetrative convection
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+
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ρ '
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✔ Wave equation + source term = pressure exerted by an ensemble of incoherent and spatially        
                                                           uniformly distributed plumes at the base of the convective zone

✔ Plumes description in the driving region :

Velocity and width  (Rieutord & Zahn, 1995 ; Zahn, 1991)
Free parameters : - plume lifetime (~convective time by the MLT)        

                      - filling factor A ~ 0.1 (number of plumes)
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✔ Wave equation + source term = pressure exerted by an ensemble of incoherent and spatially        
                                                           uniformly distributed plumes at the base of the convective zone

✔ Plumes description in the driving region :

Velocity and width  (Rieutord & Zahn, 1995 ; Zahn, 1991)
Free parameters : - plume lifetime (~convective time by the MLT)        

                      - filling factor A ~ 0.1 (number of plumes)

✔ Excitation process in the Sun

Up to 5 times more efficient than turbulent pressure
Total wave energy flux ~ 1 % of the solar flux at the base of the convective zone

 ⇒ Ability to transport angular momentum ?
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✔ In the Sun, plume-induced IGW

modify the rotation on timescales TL < Tnuc~10Gyr

more efficient than Kumar et al. (1999)

the higher the differential rotation,
the more efficient the transport

 ⇒ Process efficient in the Sun !
What about Subgiants and Red Giants ?
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✔ Calculations for several models on the subgiant and redgiant branches with IGW 
excited by penetrative convection

✔ Rotation profile for each model : - assumed smooth
                                                         - different amplitudes for δΩ=Ωcore−ΩBCZ



2 examples : models M1 and M2 

M1

M2



 Red Giant (model M2) 

The Red Giant case in a nutshell :

✔ Considering 0 < δΩ < 12 µrad s-1  as in observed Red Giants (Mosser et al., 2012)

✔ T
L
 > T

contraction
 in the core (below the H-burning shell) 

Strong radiative damping near the H-burning shell (peak of the Brunt-Väisälä frequency)

 ⇒ For the RGB stars : strong radiative damping prevents IGW from 
modifying the core rotation, confirms Fuller et al.'s result

✔ ...BUT IGW damped just near the H-burning shell : 

 Interaction with meridional circulation in the core ?  need for a complete calculation⇒
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✔ Low differential rotation  Strong damping before the H-burning shell ⇒
                                                ⇒ IGW cannot overcome the « barrier »

✔ Progressive increase of δΩ   ⇒ above δΩ > 4 µrad s-1 , IGW cross the « barrier »
                   ⇒ cf difference between prograde and retrograde waves     with δΩ 

=> It exists a threshold value for the differential rotation above which IGW can 
modify the core rotation !

(Pinçon et al., 2016)
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A possible regulation loop in Subgiants
End of 

the main sequence
δΩ

0

Core contraction
δΩ  

δΩ > δΩ
thresh

Subgiants branch

           δΩ ~ δΩ
thresh

     

IGW braking
δΩ    

δΩ < δΩ
thresh

Evolution, log g

Initial condition

Dynamical 
equilibrium

Threshold 
δΩ

thresh

 ⇒ The system reaches a 
dynamical equilibrium :

 δΩ ~ δΩ
thresh

 

δΩ = δΩ + ε δΩ = δΩ - ε'
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✔ Observations of 6 subgiants 1Msun<M<1.45Msun (Deheuvels et al., 2014)

✔ Comparison with the threshold δΩ
threshold  

derived from stellar models ?

(Pinçon et al. 2016b, in prep)
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A threshold close to the observations 

✔ Amazing similarities between both

Same typical values
Decrease with log g  

 ⇒ observations in agreement with a 
regulation effect coming from IGW

Some discrepancies: mass effect, assumed 
rotation profile, threshold selection criterion, 
meaning of the mean observed δΩ (rotational 
splittings)... 

✔ Observations of 6 subgiants 1Msun<M<1.45Msun (Deheuvels et al., 2014)

✔ Comparison with the threshold δΩ
threshold  

derived from stellar models ?
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Concluding remarks

✔ New excitation model of IGW by penetrative convection…

✔ … with consequences for the extraction of angular momentum :

- on the RGB :  IGW can not reach the core (cf Fuller et al.)⇒

 - on the subgiant branch :   IGW generated by penetrative convection are a good  ⇒
   candidate to regulate the core rotation
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✔ Next steps :

- regulation in subgiants  promising and in progress (conservative?)⇒

- role of IGW to be confirmed by means of a numerical resolution for the angular momentum 
transport (for example, on a static stellar model) and ... 

- … to be implemented in a stellar evolution code with the interaction with other processes
             (in CESTAM with the collaboration of J. Marques, IAS)



Thank you for your attention !



From the subgiants branch to the ascent of the RGB
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✔ Fuller et al. (2014)

 IGW cannot reach the core : strong radiative damping near the H-burning shell... 
...BUT as for the Sun, not so simple: depends on excitation and differential rotation (via damping)

✔ Calculations for several models on the subgiant and redgiant branches with IGW 
excited by penetrative convection

✔ Rotation profile for each model : - assumed smooth
                                                         - different amplitudes for δΩ=Ωcore−ΩBCZ
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Waves strongly damped near the H-burning shell (peak of the Brunt-Väisälä frequency)
δΩ < 12 µrad s-1 in observed Red Giants (Mosser et al., 2012)

 ⇒ For the RGB stars : radiative damping prevents IGW from modifying the core rotation

✔ ...BUT IGW damped just near the H-burning shell : 

 Interaction with meridional circulation in the core ?  need for a complete calculation⇒
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