Starspot signature on the light curve: learning about the spot distribution

instituto de astrofísica e ciências do espaço

Ângela Santos, Margarida Cunha, Pedro Avelino, Rafael A. García & Savita Mathur

Introduction

- ★ Starspots crossing the visible disc of a star induce periodic modulations on the light curve
- ★ Those modulations provide information about the stellar rotation and magnetic activity
- ★ Reinhold & Arlt (2015) proposed a method, based on the peri-

Results: Peak-height-ratios

- **\star** The peak-height-ratios, r, are essentially a function of the fraction of time the spot is visible, $t_{\rm vis}/P_{\rm rot}$
- $\star t_{vis}/P_{rot}$ is mainly determined by the inclination *i* and latitude *L*
- ★ The relation between r and L, claimed by Reinhold & Arlt (2015), is not fully valid for $i \neq 90^{\circ}$

odogram analysis, to identify the sign of the differential rotation

*** Peak-height-ratio:**

ratio between the heights of the 2nd and the 1st harmonics of a given rotation period (P_k) , h' and h respectively

$$r_{k} = \frac{h'_{k}}{h_{k}}$$

$$r_{k} > r_{k+1} \Rightarrow P_{\text{low}} = P_{k} \text{ and } P_{\text{high}} = P_{k+1}$$

 $r_k < r_{k+1} \Rightarrow P_{\text{low}} = P_{k+1} \text{ and } P_{\text{high}} = P_k$

* Observed relative differential rotation:

$$\alpha_{\rm obs} = \frac{P_{\rm high} - P_{\rm low}}{P_{\rm high}}$$

 $\alpha_{obs} > 0 \Rightarrow$ solar differential rotation $\alpha_{obs} < 0 \Rightarrow$ antisolar differential rotation $\star r$ is independent on the rotation rate, Ω , and spot contrast, $C_{\rm S}$

\star The limb-darkening law and spot size affect *r* and t_{vis}/P_{rot}

- ★ In this work, we study in detail the peak-height-ratios and their dependency on the spot and stellar parameters
- \star Here, we present the first source for false-positives/negatives and observational bias

Results: Sign of the surface differential rotation

★ False-positive/negative:

- * when P_k and P_{k+1} are associated to spots on the opposite hemisphere from the observer
- * when P_k and P_{k+1} are associated to spots at $L_k < 0$ and $L_{k+1} > 0$ (opposite and same hemisphere as the observer) and $|L_k| > |L_{k+1}|$

\star Observational bias:

* The modulation induced by spots at same

Sign of α_{obs} obtained for light curves modulated by 2 spots at latitudes L_1 and L_2 **Yellow:** only one rotation period is successfully detected (no information on α_{obs} is retrieved) **Green:** the correct sign of α_{obs} is recovered

Red: false-negative for the sign of α_{obs}

Conclusions

- ★ Despite the degeneracy between stellar inclination angle and spot latitude, the peak-height-ratios provide a simple and fast way to constrain those parameters.
- \star This is an advantage of the method in comparison with other time consuming methods.
- ★ If the inclination angle is known, the peak-height-ratios can actually constrain the latitudinal distribution of spots.

hemisphere as the observer will be preferentially observed, specially for small *i*

* This will contribute to a low rate of false-positives/negatives for the sign of $\alpha_{\rm obs}$

Santos et al. in preparation

References: Reinhold, T. & Arlt, R. 2015, A&A, 576, A15

Acknowledgements:

NCAR

