Testing Asteroseismology with APOGEE Star Clusters

Marc Pinsonneault Ohio State University

The APOKASC Collaboration

Sample Motivation: Testing the First Dredge-Up and Mixing

[M/H]

12

5

C C C G Median age [Gyr]

APOKASC

- SDSS-III: More than 10,000 stars in the original Kepler fields with high-resolution H-band spectra
- APOGEE-Kepler Asteroseismology Collaboration (APOKASC)
 - DR10: 1,918 giants with spectra and asteroseismic parameters released
 - DR13: 6,700+ giants to be released
- There is also overlap with CoRoT

APOGEE Data Release 13

- Automated fitting algorithm (FERRE) for the entire H band spectrum
- DR13: Numerous improvements
 - 15 element mixture
 - No calibration applied: metallicity, temperature
 - Ex post facto calibration of results against independent measurements
 - Asteroseismic log g
 - Evolutionary state

Seismology: Calibrating Spectroscopic Gravities

Asteroseismic Surface Gravities reveal evolutionary state-dependent systematic offsets

Spectroscopy and Evolutionary State

Temperature Offset from Mean RGB ridgeline is a good diagnostic....

Temperature Deviations vs. Spectroscopic Log g

NEW: Overlap Populations are chemically distinct!

The Kepler Giants Revealed

Scaling Relations for Bulk Populations

- Two most basic observables:
 - Frequency of maximum power

Mean frequency spacing

$$\frac{M}{M_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right)^{3} \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{3/2}$$
$$\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{1/2}.$$

Hekker et al. 2010 data for Kepler giants

NGC 6791 Milliman et al. 2016

NGC

6819

et al.

2016

Brewer

M67 Geller et al. 2015

Open Clusters: Testing Asteroseismology

Prior Work in NGC 6791 (Miglio et al. 2012): Differential Radius Offset, RC vs. RGB

Figure 3. NGC6791: ratio between radii determined using L and T_{eff} (R_{CMD}), and those obtained via Eq. 4 (R_{seismo}). The mass of each star determined via Eq. 3 is colour coded.

Our Approach

a $(\Delta v / \Delta v_{sun}) = (M/M_{sun})^{0.5} (R/R_{sun})^{-1.5}$ b $(v_{max} / v_{max,sun}) = (M/M_{sun}) (R/R_{sun})^{-2} (T/T_{sun})^{-0.5}$ =>Error in M scales as a³b⁻⁴

If you know R (eclipsing binary) or L (cluster): => Error in M scales as a² from Δv => Error in M scales as b from v_{max}

Log g Comparisons

physical vs. asteroseismic log g

Note:

Systematic Errors Dominate

Comparing RGB Mass Scalings

Different answers, Different reductions

Assuming R: Closer agreement

 Δv lower than

V_{max}

What is Going On?

Scaling Relations in Clusters

Adding a distance makes mass estimation more precise

 Δv offset predicted by corrections seen

Caution: zero point of differences sensitive to absolute Teff, distance scales.

EB vs. OC? Teff systematics? MP vs. AM? Peak-bagging vs. automated analysis?

Conclusions

- Asteroseismic gravities are in good agreement with physical gravities in clusters
- Evolutionary state diagnostics from seismology agree well with spectroscopic ones
- There is a modest but real systematic mass overestimate in red giant stars from raw scalings
- Δv corrections relative to v_{max} are present at high significance

Systematic Errors In Red Giant Isochrones

Tayar et al. 2016, in prep

REAL DATA – WEAKER TEFF DEPENDENCE ON FE/H THAN PREDICTED BY SOLAR CALIBRATED MODELS APOKASC DR13, Spectroscopic Teff vs. Model Teff

