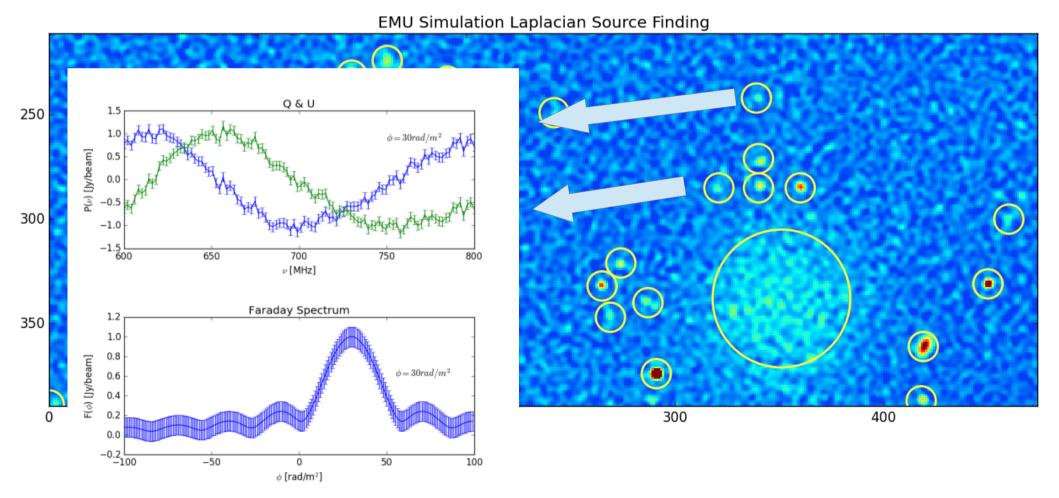


Using Deep Learning to Detect Complex Faraday Rotation Measures

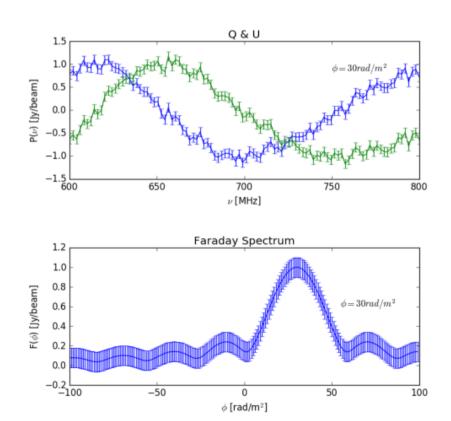
Shea Brown The University of Iowa SPARCS IX – Lisboa, Portugal

Australian SKA Pathfinder

POSSUM: Polarisation Sky Survey of the Universe's Magnetism



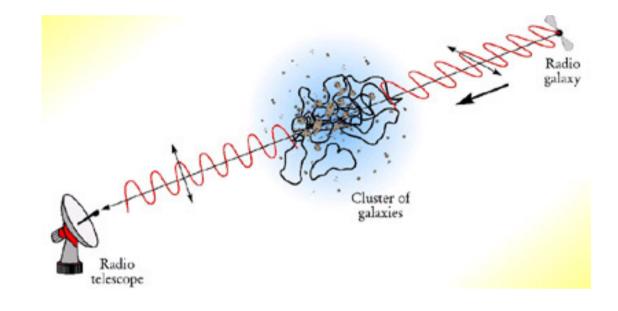
A magnetized plasma with an ordered magnetic field will rotate the angle of linearly polarized light

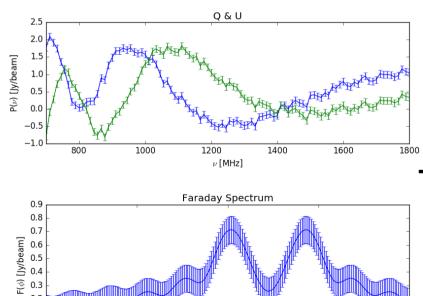




Simple Source

A magnetized plasma with an ordered magnetic field will rotate the angle of linearly polarized light





0

 ϕ [rad/m²]

50

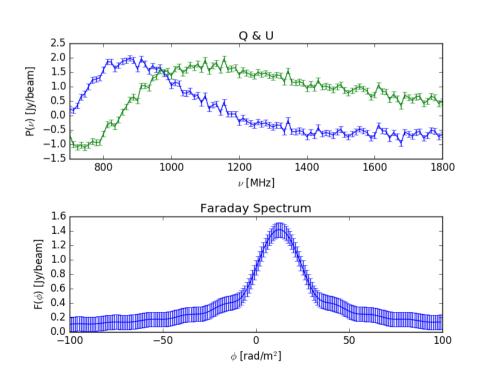
100

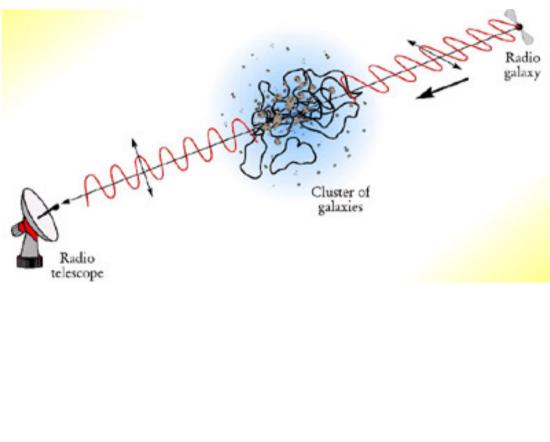
0.2 0.1 0.0 -100

-50

Two Simple Sources -> Complex

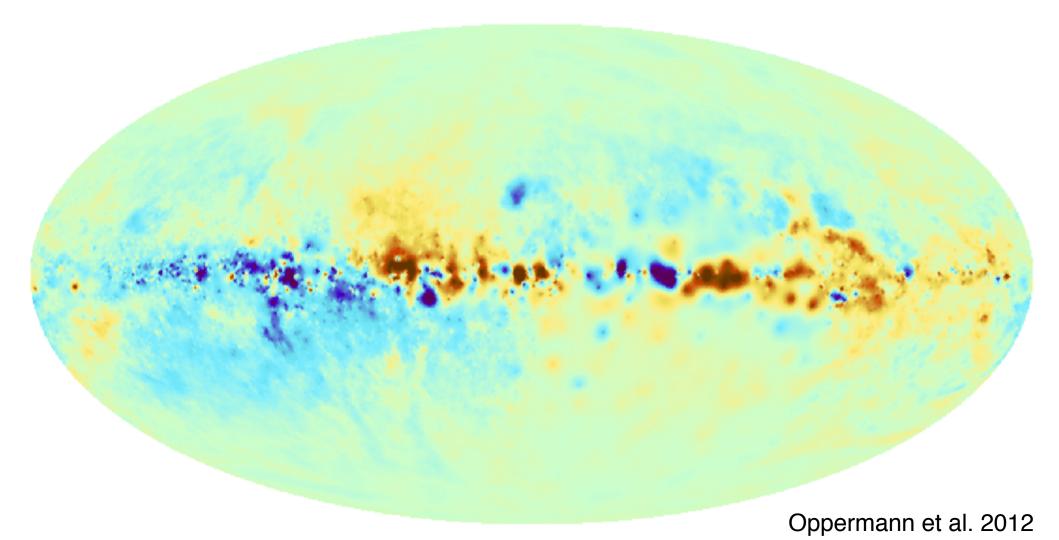
A magnetized plasma with an ordered magnetic field will rotate the angle of linearly polarized light





Faraday Thick Source

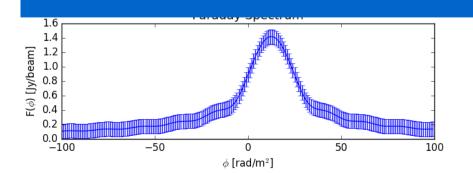
Bayesian Reconstruction of Rotation Measure Sky



A magnetized plasma with an ordered magnetic field

Ν

How do we automatically tell the difference between simple and complex sources?

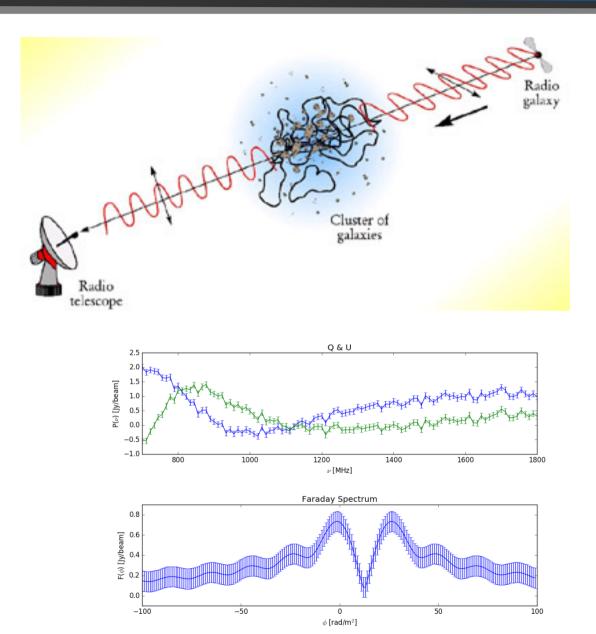


Faraday Thick Source

• We understand the physics and know the important parameters

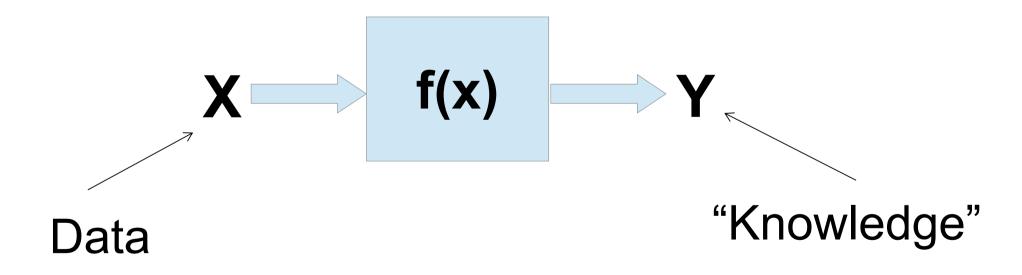
• We understand the observation process

• We can generate synthetic data to train a classifier to distinguish between simple and complex sources



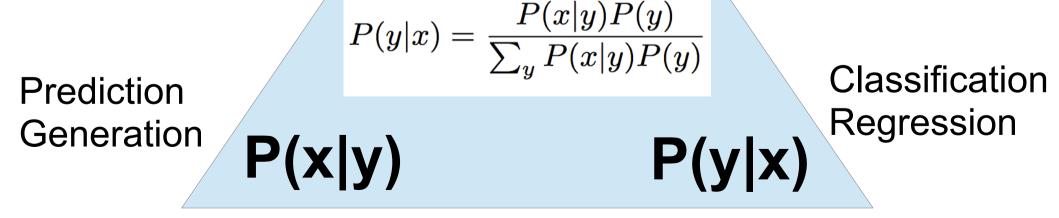
What is machine-learning?

- Just function approximation



What is machine-learning?

- Just function approximation
- What kind of functions?



P(x,y)

Adapted from Lin & Tegmark 2016

Unsupervised

.What is machine-learning?

- Just function approximation
- What kind of functions?

. Classification

- y is discrete set of classes
 - y = [cat, dog, rock, tree, ...]

– x might be an image

P(y|x)

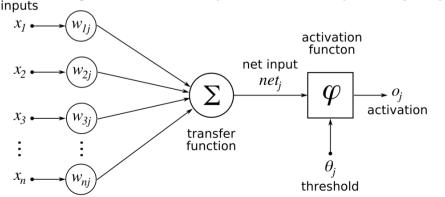
Train with gradient descent

y=[0.7,0.1, ...]

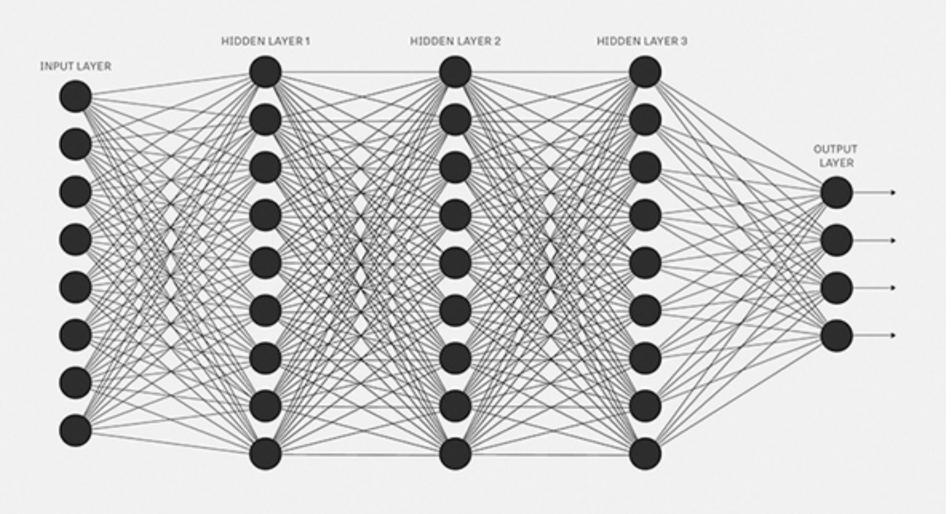
P(y|x)

e.g., binary linear model example

- X is a vector of "features" of an person
 - [height, weight, age, miles run per week, time of Facebook,...]
- $P(\mathbf{X})$ is the probability that this person is diabetic
- Simplest map from a vector to a scalar: $P(X) = W \cdot X$
- Training: Initialize W with random weights. Get X for thousand of people, along with the associated Y (0 or 1).
- Minimization problem for L(Y- $W \cdot X$), e.g. gradient decent



Deep neural network



Information "Hamiltonian"

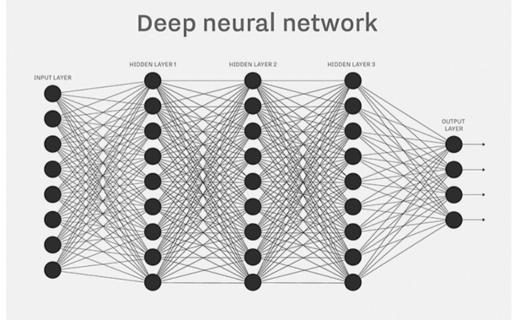
$$P(y|x) = \frac{P(x|y)P(y)}{\sum_{y} P(x|y)P(y)}$$

$$\mathbf{p}(\mathbf{x}) = \frac{e^{-\mathbf{H}(\mathbf{x})}}{\sum_{y} e^{-\mathbf{H}(\mathbf{x})}}$$

$$H_y(\mathbf{x}) = -\ln\left(P(\mathbf{x}|y)P(y)\right)$$

Why does it work?

- Mimics the natural world
- Generative hierarchy



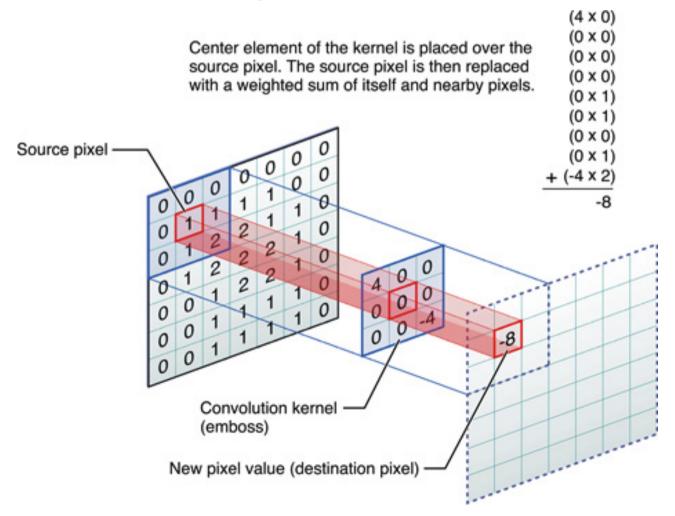
 $\mathbf{f}(\mathbf{x}) = \boldsymbol{\sigma}_n \mathbf{A}_n \cdots \boldsymbol{\sigma}_2 \mathbf{A}_2 \boldsymbol{\sigma}_1 \mathbf{A}_1 \mathbf{x}$ $\mathbf{A}_i \mathbf{x} = \mathbf{W}_i \mathbf{x} + \mathbf{b}_i$

$$\sigma(x) = max(0, x)$$
$$\sigma(\mathbf{x}) \equiv \frac{e^{\mathbf{x}}}{\sum_{i} e^{y_{i}}}$$

$$\mathbf{p}(\mathbf{x}) = \sigma(-\mathbf{H}(\mathbf{x}))$$

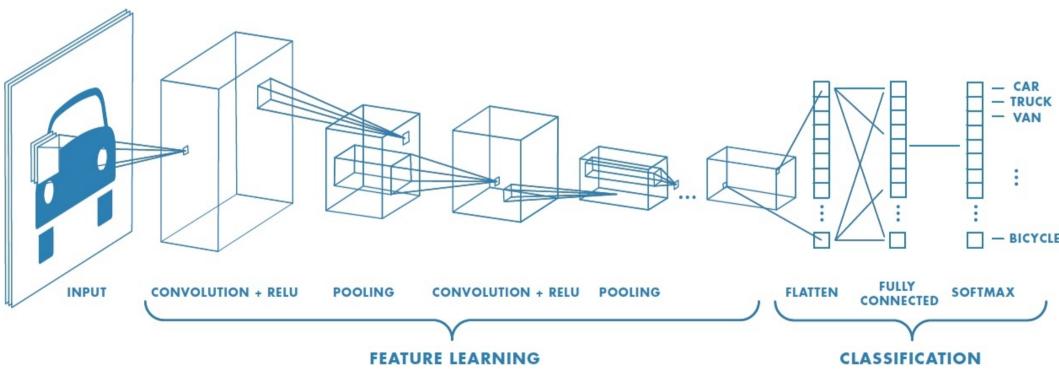
Convolutional Neural Networks

- Reduce number of weights and insert translational invariance



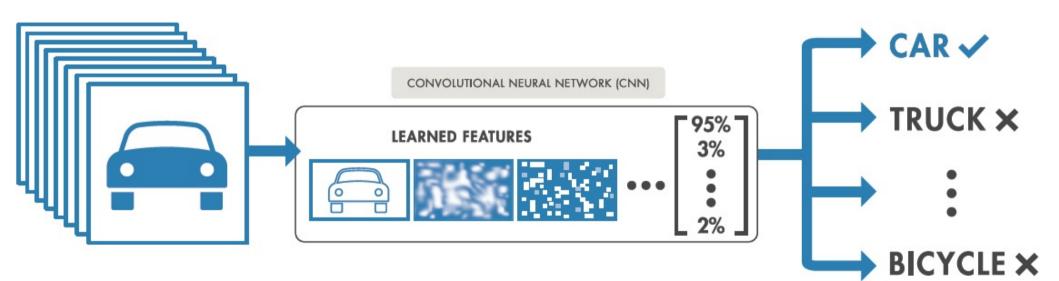
Convolutional Neural Networks

- Reduce number of weights and insert translational invariance

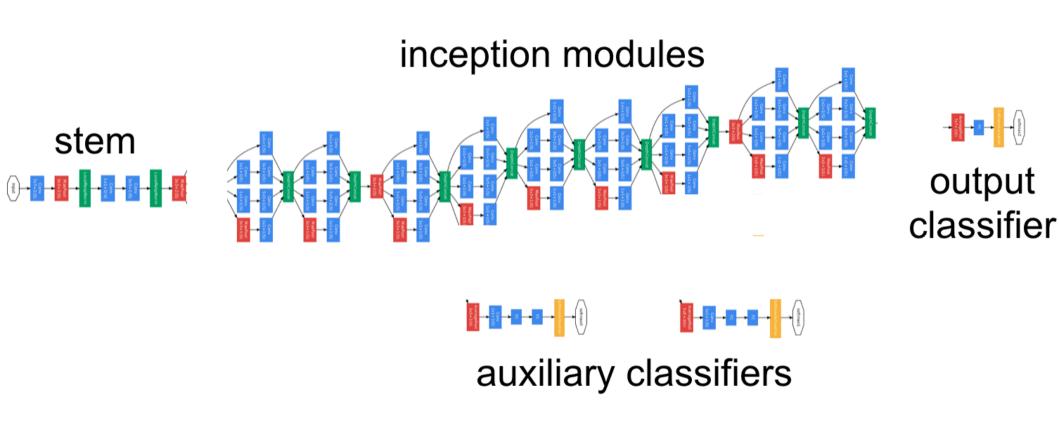


Convolutional Neural Networks

- Reduce number of weights and insert translational invariance

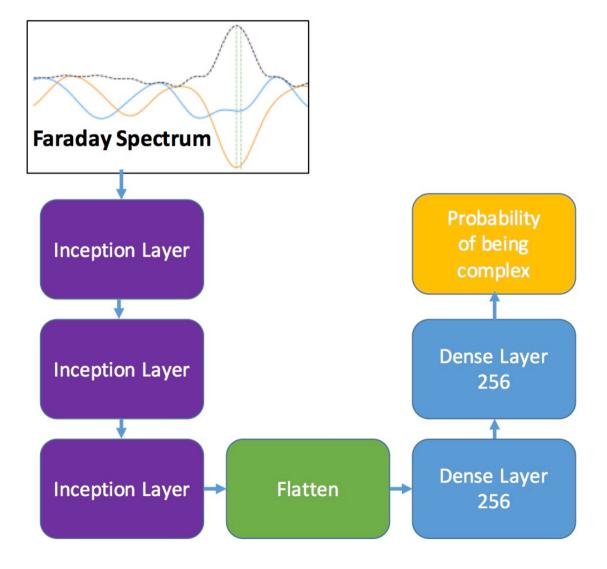


Inception Networks

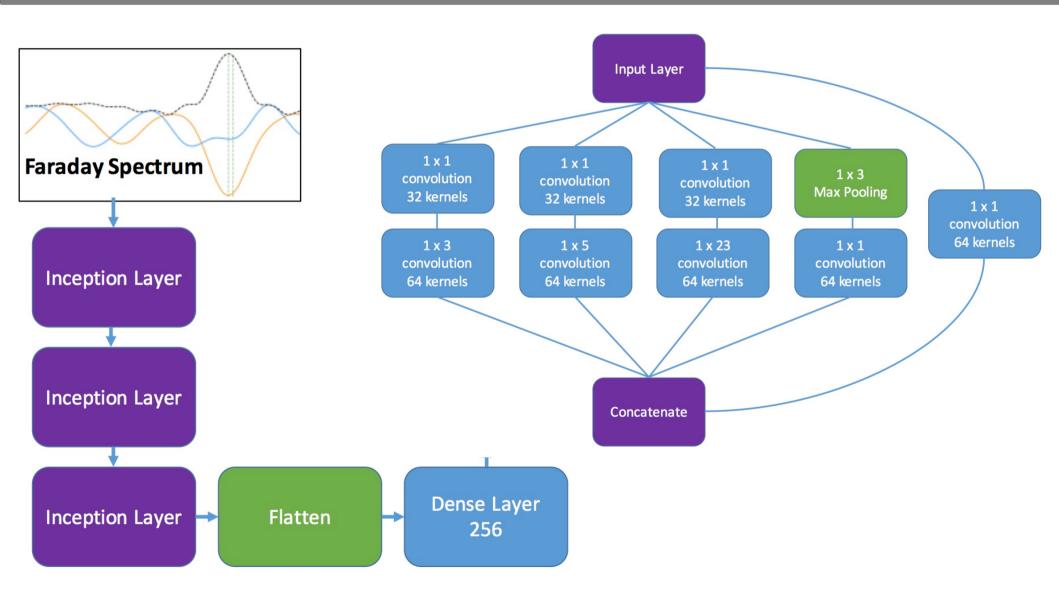


GoogLeNet team (Szegedy et al. 2014)

Our Network



Our Network



MNRAS 000, 000-000 (0000)

Preprint 23 October 2017

Compiled using MNRAS LATEX style file v3.0

Classifying Complex Faraday Spectra with Convolutional Neural Networks

Shea Brown^{1*}, Brandon Bergerud¹, Allison Costa¹, Bryan Gaensler², Jacob Isbell¹, Daniel LaRocca¹, Ray Norris³, Cormac Purcell⁴, Lawrence Rudnick⁵, Xiaohui Sun⁶

¹Department of Physics & Astronomy, The University of Iowa, Iowa City, IA, 52245

²Dunlap Institute, University of Toronto

³Western Sydney University

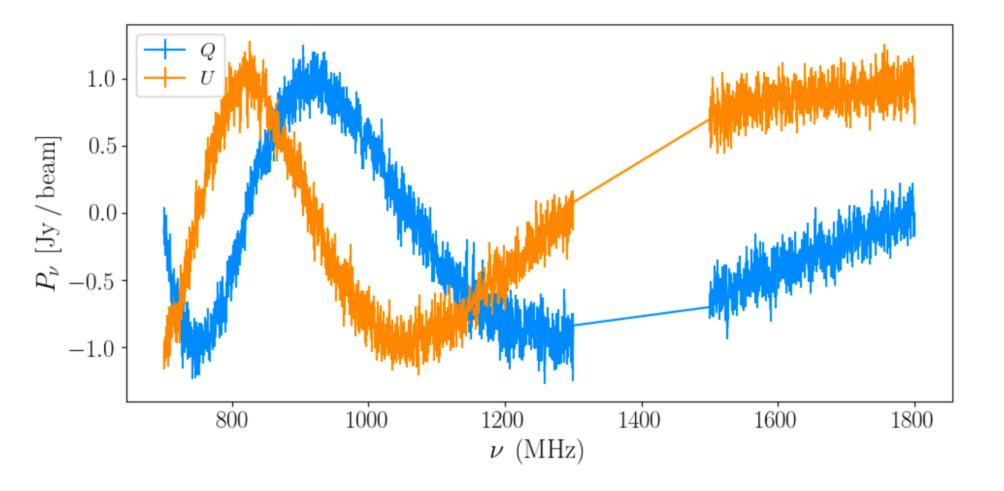
⁴Research Centre for Astronomy, Astrophysics, and Astrophotonics, Macquarie University, NSW 2109, Australia

⁵ University of Minnesota

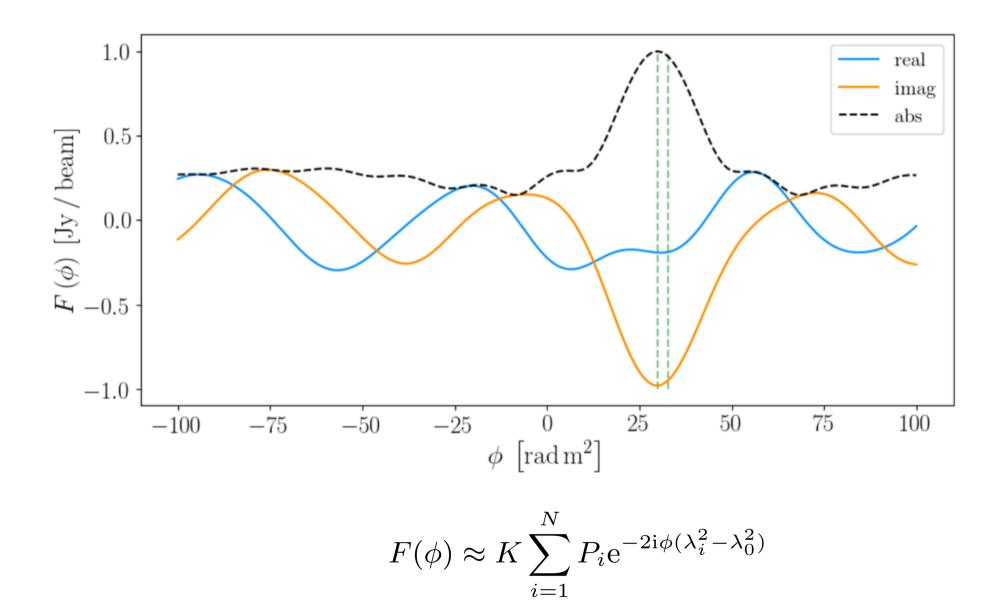
⁶Department of Astronomy, Yunnan University, and Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming, 650091, China

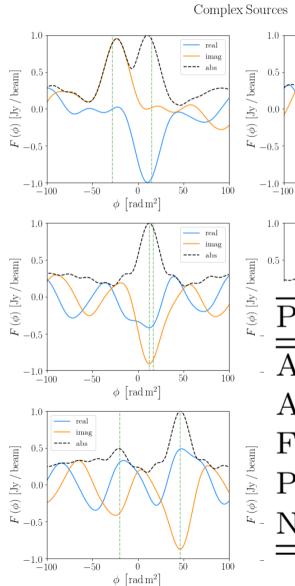
ABSTRACT

Advancements in radio spectro-polarimetry offer the possibility to disentangle complex regions where relativistic and thermal plasmas mix in the interstellar and intergalactic media. Recent work has shown that even apparently simple Faraday Rotation Mea-



$$P(\lambda^2) = P_1 e^{\left[2i(\chi_1 + \phi_1 \lambda^2)\right]} + P_2 e^{\left[2i(\chi_2 + \phi_2 \lambda^2)\right]}$$





 Simulate simple and complex (two component) sources over relevant parameter space

. Train CNN on simulated sources

Symbol	Range
P_1	1
P_2	$[0,\ 1]$
$\phi_{\{1,2\}}$	[-50, +50]
	$[0, +\pi]$
σ	[0, 0.333]
	P_1

 $\phi \, \left[\mathrm{rad} \, \mathrm{m}^2 \right]$

real imag

---- abs

50

real

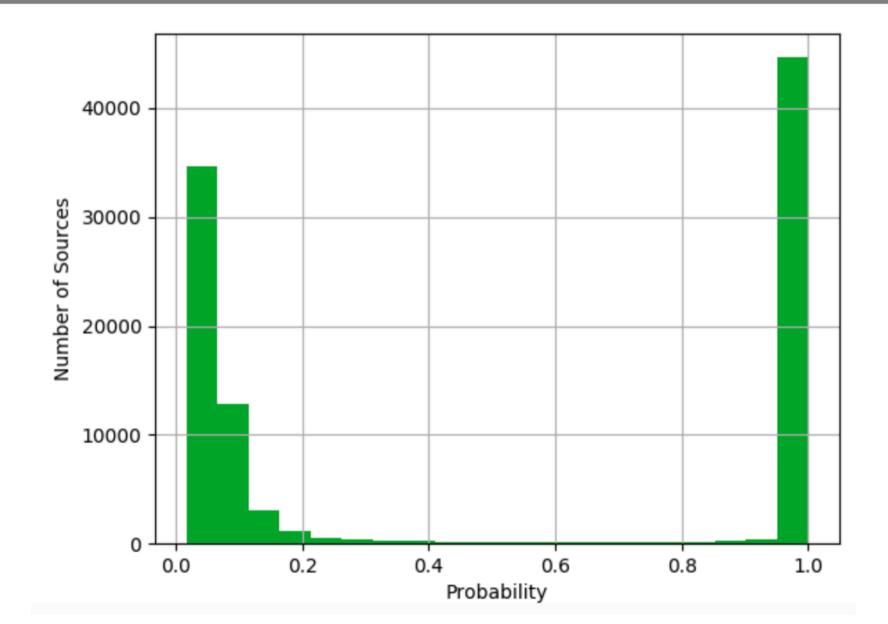
abs

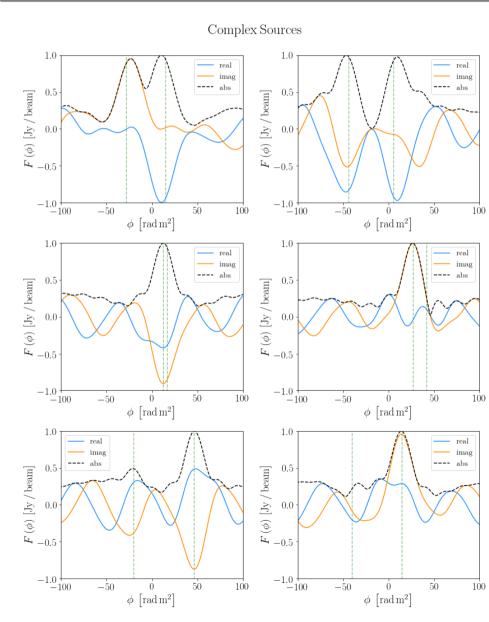
imag

ó

 $\phi \, \left[\mathrm{rad} \, \mathrm{m}^2 \right]$

-50





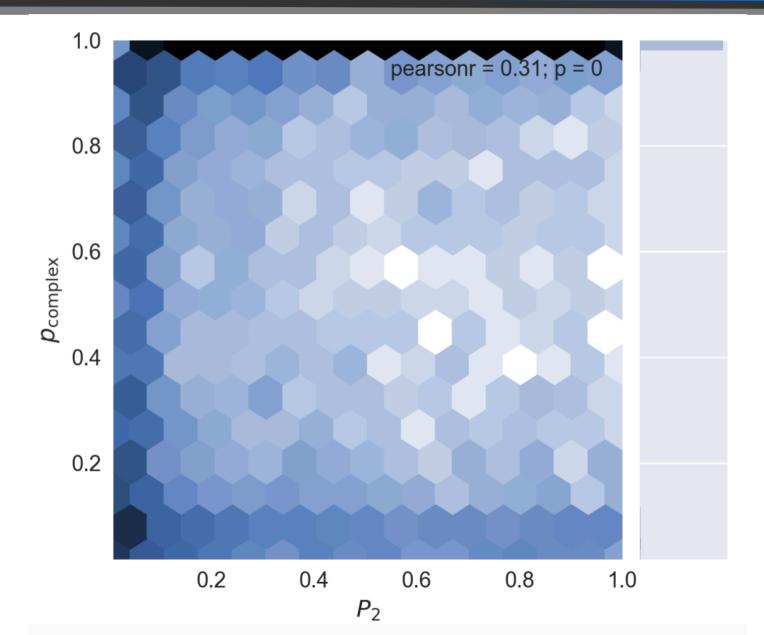
Simulate simple and complex (two component) sources over relevant parameter space

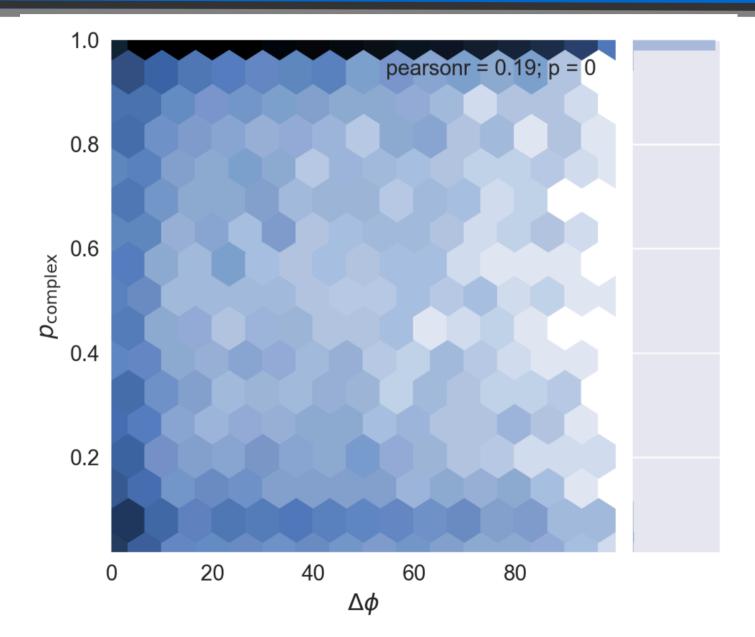
Train CNN on simulated sources

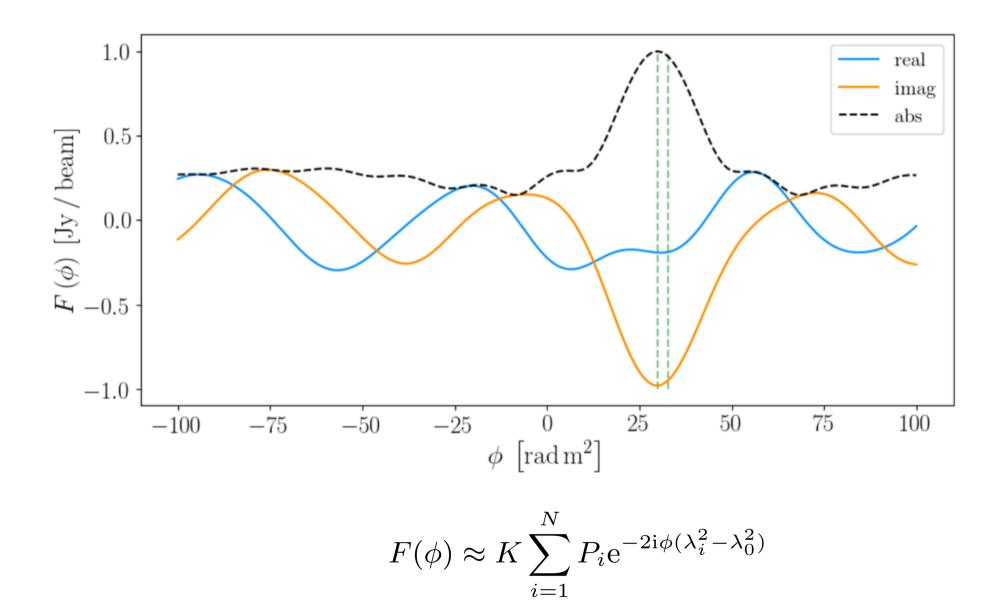
Test CNN on new sim. Sources

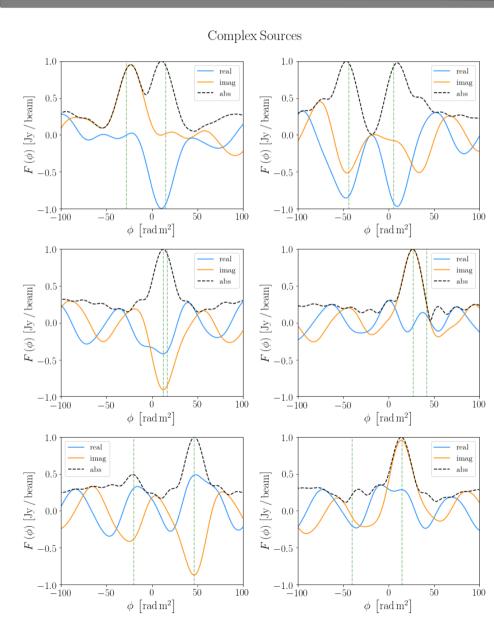
- ~3.0% false positives
- ~7.2% false negatives

Predicted $->$	Simple	Complex
True Simple	48,318	1481
True Complex	$3,\!618$	$46,\!583$









Sub-space that might make it into the catalog:

Delta phi < 10% FWHM

S/N of P₁>5, & P₂/P₁ > 0.1

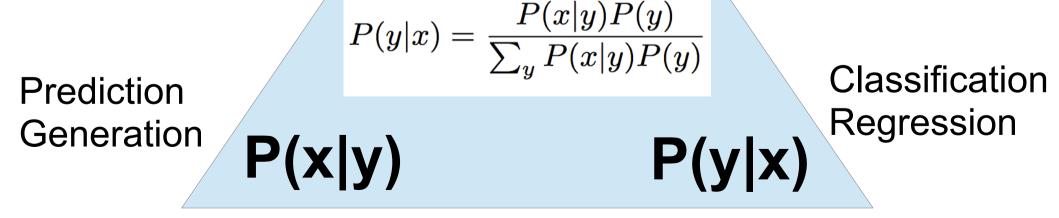
<0.3% false positives

<1.0% false negatives

Predicted - >	Simple	Complex
True Simple	29,281	69
True Complex	247	$25,\!337$

What is machine-learning?

- Just function approximation
- What kind of functions?



P(x,y)

Adapted from Lin & Tegmark 2016

Unsupervised

Thank You!