FORM FREE SOURCE EXTRACTION FOR RADIO ASTRONOMY

PROFOUND RADIO EXTRACTION

Robotham et al 2018 (GitHub: asgr/ProFound)

GEOMETRY FORCED (E.G. ELLIPTICAL) APERTURES OFTEN FAIL

THE PROBLEM WITH OUR CURRENT (SEXTRACTOR) APERTURES

THE NEED TO START AGAIN

- Next generation surveys require high quality input catalogues, and produce too many sources to fix "by hand".
- In short, I started again with the source extraction.
- It was not obvious what improvements might be possible over SExtractor (given how well tested and established it is) but two areas quickly came to light:
 - It does not watershed de-blend optimally (the most common failure we see is due to this).
 - It uses strictly elliptical apertures and then tries to distribute overlapping flux using a number of internal schemes.

THE WATERSHED PROBLEM

SEXTRACTOR TENDS TO CREATE WATERSHED ISLANDS

THE WATERSHED SOLUTION

PROFOUND WATERSHEDS THROUGH SADDLE CONTOURS

PROFOUND GETS ROUND THESE ISSUES

- We use a similar approach to find the initial high S/N image segments:
 - Careful sky subtraction (iterative masking and clipping)
 - Find seed pixel complexes after image filtering.
 - Segments are de-blended to some tolerance (using a different algorithm to SExtractor- non-discretised surface brightness / sky-RMS thresholds and locally adaptive).
 - Segments are grown organically- apertures never used.

PROFOUND USES AN AGGRESSIVE MESH BASED SCHEME

Ultra-VISTA sky versus ProFound sky

A PROFOUND SOLUTION

INITIAL VIKING Z-BAND IMAGE

BRIGHT SEGMENT SEED COMPLEXES IDENTIFIED AND DE-BLENDED

SEGMENTS DILATED UNTIL THE FLUX CONTAINED CONVERGES

THE BEST TOTAL PHOTOMETRY HAS THE USUAL ISSUES IT SEEMS:

PROFOUND FIXES THE VERY SERIOUS ISSUES NICELY

NEW DE-BLENDER ALSO WORKS WELL ON RESOLVED SOURCES

This is important for more general classes of problem, where we cannot guess the geometry in advance- i.e. the Universe is not full of smooth elliptical things. E.g. continuum image radio jets etc.

ProFound: Application to Radio Data

Work done by Catherine Hale (arxiv-1902.01440)

Current Radio Source Detectors

Hale et al 2019, arxiv-1902.01440

- PyBDSF (Mohan+ 2015)
 - Used in e.g. Shimwell+ 2017, Interna+ 2017
- BLOBCAT (Hales+ 2012)
 - Used in e.g. Smolcic+ 2017
- AEGEAN (Hancock+ 2012,2018)
 - Used in e.g. Hurley-Walker+ 2016

Rely on finding bright pixels above the sky and then fitting Gaussian components

SPARCS 2019

But

LOFAR I 50 MHz

Hodge+ 2011

Hale+ submitted

SPARCS 2019

ProFound (Robotham+ 2018)

- It has been used in many optical/IR studies (e.g Davies+ 2018, Robotham+ 2018, Turner+ in prep)
- Uses pixel based extraction of fluxes (similar to SExtractor)
- Does not assume any source morphology
- We want to investigate whether it can be used as a radio source detector

SPARCS 2019

- Other benefit to ProFound
 - Multi-wavelength capabilities

Possible caveats

Noise in radio surveys is correlated

More likely to detect noise as sources in optical/IR

Will need to use higher thresholds

Use false detection rate analysis to work out your threshold

SPARCS 2019

False Detection Rate

Slides originally by Catherine Hale

False Detection Rate

Slides originally by Catherine Hale

Methods

Compared ProFound to both PyBDSF and AEGEAN

SPARCS 2019

- Optimised FDR for each code:
 - ProFound skycut=3.5
 - PyBDSF thresh_isl=3, thresh_pix=5
 - AEGEAN floodclip=4, seedclip=5

Sources WITH EXTENDED MORPHOLOGY

PyBDSF

PyBDSF - atrous do

AEGEAN

ProFound

Image

RA: 36.09 ° Dec: -4.43 ° RA: 36.36 ° Dec: -4.78 Streaking of emission due RA: 36.93 Dec: -4.36 to extra gaussian components RA: 36.52 ° Dec. 4.52 ° "needed" JVLA-VIDEO Images RA: 36.58 ° (Heywood+ Dec: -4.00 ° in prep)

Slides originally by Catherine Hale

Sources WITH EXTENDED MORPHOLOGY

Slides originally by Catherine Hale

Sources WITH EXTENDED MORPHOLOGY

Slides originally by Catherine Hale

Observations of 3C Sources

http://www.jb.man.ac.uk/atlas/

Slides originally by Catherine Hale

Residuals

- Non-source sky residuals should be Normal around 0.
- ProFound behaves well, with no serious positive of negative flux remaining.
- PyBDSF slightly under models the true sources (so excess positive flux remaining).
- AEGEAN both under and over models the sources, and more aggressively than PyBDSF.

(b) With atrous_do used for PyBDSF.

Slides originally by Catherine Hale

Testing ProFound

- Need to test how it works on known data
- Perform four simulations:
 - Model Gaussian sources
 - Model extended elliptical sources
 - Complex real sources from VLA images
 - Lobed morphology real source from 3C

SPARCS 2019

Gaussian and Elliptical simulations

- Gaussian:

Realistic sizes from PyBDSF sources and fluxes from Wilman+ 2008 SKA Simulated Skies

Elliptical:
 Elliptical components
 from Wilman+ 2008
 convolved with the beam

Slides originally by Catherine Hale

Complex and Lobed simulations

- Complex:
 Use source model of complicated sources from ProFound multiplied by factor (<1)
- Lobed:
 - Use multi-component lobed sources from Wilman+ 2008

Slides originally by Catherine Hale

Point Like Sources

Slides originally by Catherine Hale

Extended Morphology Sources

Slides originally by Catherine Hale

Complex Sources

Slides originally by Catherine Hale

Advantages of ProFound

Advantages	Disadvantages
Easily finds and models extended structure	Can correct for this
Easy to combine together multiple components	Simple numerical factor
Not reliant on source morphology	
Can be used in multi-wavelength framework	

Conclusions

- ProFound is available on GitHub, and is now being used for a number of large optical and radio surveys Robotham et al 2018 (GitHub: asgr/ProFound)
- ProFound looks like it can be a really useful radio source extractor, see Hale et al 2019, arxiv-1902.01440
- It both models compact sources and extended sources well
- Many multi-wavelength studies applications
- Entered into the 1st SKA data challenge. Results are not out yet, but ProFound is clearly performing very well.

SPARCS 2019