Radio luminosity function below the detection threshold

Eliab Malefahlo Supervisor: Mario Santos Co-supervisor: Matt Jarvis & Jonathan Zwart University of the Western Cape

9 May 2019 SPARCS

Centre for Radio Cosmology

UNIVERSITY of the WESTERN CAPE

Radio luminosity functions

- Luminosity function is the number of sources in a luminosity interval over a given volume.
- Luminosity being intrinsic can give clues about the nature of the sources.
- We use the radio luminosity function to:
 - Probe the nature of radio emission from radio quiet quasars.
 - Study the cosmic star-formation history.
- All the previous generation of large radio surveys have detections above 1mJy at 1.4 GHz, where radio-quiet quasars and star-forming galaxies start to dominate.

Bayesian stacking

- Need axillary data (e.g optical).
- Extract radio flux at axillary position.
- Bin the sources $[S_{mi}, S_mi + \Delta s_{mi}]$.
- Assuming the number of sources in the flux bin follows a Poisson distribution then the likelihood is,

-h. T

- an no: of source Х sy Flux Source counts
- se rms

$$\mathcal{P}\left(\boldsymbol{\Theta}|\mathbf{D},H\right) = \frac{\mathcal{L}\left(\mathbf{D}|\boldsymbol{\Theta},H\right)\Pi\left(\boldsymbol{\Theta}|H\right)}{\mathcal{Z}\left(\mathbf{D}|H\right)}.$$

Counts to luminosity functions

SKA Design Studies: Simulated Skies (SKADS) Wilman et al 2010

• 20 deg²

Emission of radio quiet quasars

The nature of radio-quiet quasars has been debated for for a long time.

- Are they powered by AGN like radio-loud quasars?
- Or are they powered by star-formation?

SDSS quasars

- Quasars taken from SDSS II DR7. Contains ~ 105 700 sources over ~ 6600 deg².
- We use a uniformly selection of source over the footprint (~47 000).

Divide the source into 7 redshift bins to avoid evolutionary effects.

We apply an absolute magnitude cut to each bin to ensure completeness.

Radio data

 FIRST survey is taken by the Very Large Array (VLA) at 1.4 GHz. Covers ~10 000 deg²

- Radio flux of the quasars extracted at the position of the SDSS quasars.
- ~3800 of the 47 000 have radio counter-parts.

Optically selected quasar radio luminosity function

Optically selected quasar radio luminosity function

Evolution of QRLF

 $\log_{10}[L_{1.4}/(W Hz^{-1})]$

Cosmic star formation history

- Important in understanding galaxy evolution.
- Star formation traces: UV, Optical, Far-IR and Radio.
- UV and Optical are obscured by dust.

- Far-IR and Radio are not deep enough.
- Push sensitivity of radio measurements through advanced stacking.

Cosmos field

- Wealth of Multi-wavelength data
- Axillary data UltraVista
 - 1.77 deg
 - 606, 887 sources
 - Ks < 24.7 (3σ)
- Radio data JVLA
 - 3 GHz
 - 2.6 deg
 - Average rms 2.3 µJy

Star forming galaxies

Removing bad data

• Ks_flag <0

Removing stars

• P(gal) – P(star) > 0

Star-forming galaxies

(U − V) > 0.88 × (V − J)+0.69
for 0.1 < z < 0.4

Flux extraction

Preliminary results: LF

To do: Cosmic star formation history

- Calculate RLF to z~5
- Star-formation rates using IR Radio correlation
- Integrate over RLF and SFR to get SFRD

Summary

- Successfully reconstructed RLF of SKADS sources to more than 2 oders of magnitude.
- The quasar RLF of SDSS-FIRST quasars is in agreement with literature.
- The RLF steeply increases towards the detection threshold which coincides with RLF of starforming galaxies.
- On going project to get star formation history using JVLA.