

Confusion, Correlations, and the Faint Extragalactic Radio Background

Tessa Vernstrom | CSIRO Bolton Fellow May 2019 SPARCS IX – LISBON

CSIRO ASTRONOMY & SPACE SCIENCES, CASS www.csiro.au

The Cosmic Radio Background

Confusion, Cross Correlaitons and Faint Radio Background | SPARCS IX 2019 | Tessa Vernstrom

The Cosmic Radio Background

Point source emission:

- Starburst/star-forming galaxies
- Active Galactic Nuclei (AGN)
- Other: e.g. Dwarfs

Low surface brightness emission:

- Galactic Halos
 - Starburst
 - AGN
- Cluster Emission
 - Giant/mini radio halos

Diffuse

- Radio relics
- Intra-cluster medium
- Cosmic web/Large Scale Structure

How Can We Detect It?

- Direct imaging
- Statistical methods:
 - Confusion
 - Cross Correlation
 - Stacking
- Polarization:
 - Faraday rotation from background AGN
 - Dispersion from fast radio bursts

Diffuse Emission – Direct Imaging

- Diffuse emission in clusters
 - Halos
 - Mini-halos
 - Relics
 - But only few hundred detected (more coming now from low frequency surveys)
- Only bright sources (>1mJy) in high(er) mass clusters detected.
- Difficult to directly detect due to:
 - low surface brightness
 - Requires high sensitivity to large angular scales
 - Sizes up to Mpc scales
 - Difficult for radio interferometer telescopes
 - Bright Galactic foregrounds
 - Bright point sources
 - Faint point source confusion

61.48

61.49

161.51

How Can We Detect It?

- Statistical methods:
 - Confusion
 - Cross Correlation
 - Stacking
- Polarization:
 - Faraday rotation from background AGN
 - Dispersion from fast radio bursts

Confusion: Friend or Foe?

- Simulated Gaussian "Halo" •
 - 60" size
 - 5 mJy total brightness
 - 45" beam
 - Addition of brighter and brighter point sources
 - None brighter than 1mJy

0.75

0.50

0.00

CSIRC

Using Confusion

- Confusion is the blending of faint sources within a telescope beam
- PDF of image pixel histogram from confusion known as P(D)
- Confusion noise, σ_c (width of P(D))
 - → governed by beam and source count

Confusion Diffuse Emission - Data

- Can try to statistically detect presence of sources too faint or diffuse to be detected normally
- Subtract point sources or use discrete source count model
- Example: ATCA
 - ELAIS S1
 - 7 pointing mosaic
 - 1.7 GHz
 - 2.5' x 1' beam
 - RMS ~ 50 μ Jy
 - Subtraction limit ~150 μJy
- Use ATLAS point source models to subtract bright sources and JVLA discrete count for un-subtracted sources

Confusion Diffuse Emission - Results

- Can try to statistically detect presence of sources too faint or diffuse to be detected normally
- Subtract point sources or use discrete source count model
- Example: ATCA
 - ELAIS S1
 - 7 pointing mosaic
 - 1.7 GHz
 - 2.5' x 1' beam
 - RMS ~ 50 μ Jy
 - Subtraction limit ~150 μJy
- Use ATLAS point source models to subtract bright sources and JVLA discrete count for un-subtracted sources

Confusion Diffuse Emission - Results

Confusion Diffuse Emission - Models

CSIRC

Confusion Diffuse Emission - Models

Confusion Diffuse Emission

Advantages:

- Detection of emission below confusion level
- Possible to constrain models of cluster emission

Disadvantages / Caveats:

- Assumes emission smaller than (or roughly equal to) the beam size
- Requires point source subtraction and/or model for point sources
- Need to know beam shape(s) and noise properties well

Future work / Continuations:

- Repeat with different / larger area
- Compare results for regions with and without known diffuse emission
- Different (lower) frequency

How can we detect it?

- Statistical methods:
 - Confusion
 - Cross Correlation
 - Stacking
- Polarization:
 - Faraday rotation from background AGN
 - Dispersion from fast radio bursts

Cosmic Web - Cross Correlation

• Galaxy number density → traces thermal baryon distribution → should correlate with diffuse synchrotron

Cosmic Web - Cross Correlation

• Galaxy number density → traces thermal baryon distribution → should correlate with diffuse synchrotron

2MASS Galaxy Distribution coded by redshift (photo credit :Thomas Jarrett (IPAC/Caltech)

Simulated radio synchrotron (credit: Klaus Dolag)

Cosmic Web - Cross Correlation

- Galaxy number density → traces thermal baryon distribution → should correlate with diffuse synchrotron
- How correlated as a function of distance or angular scale?
 - Unknown
- How correlated?
 - Unknown
- Reasons for a positive correlation:
 - AGN (core)
 - Starbursts and disk emission
 - AGN (WAT and NAT associated with clusters)
 - Cluster halos
 - Cluster relics
 - Synchrotron cosmic web
- Reasons for a negative correlation:
 - Galactic extinction (galaxy number counts down, synchrotron up)

The MWA:

- Frequency range: 80 300 MHZ
- 2048 dual polarization dipoles
- Number of antenna tiles: 128
- Number of baselines: 8128
- Collecting area: 2000 sq. meters
- FOV: 15 50 deg. (200 2500 sq. deg.)
- Polarization: I, Q, U, V

Photo credit: Natasha Hurley-Walker

Good sensitivity to large angular scales, low frequency, large field of view

- Field: EoR0 RA=0 Dec= -27
- υ = 180 MHz
- Beam 2.3' 2.9'
- $\sigma_n = 0.6 0.96 \text{ mJy beam}^{-1}$
- $\sigma_c = 4.4 9.5 \text{ mJy beam}^{-1}$
- Subtraction limit ~ 50 mJy

Point source & Galaxy sub

Cross Correlation with MWA - WISE Number Density

$$CCF(xshift,yshift) = \frac{1}{n}\sum(R_{i,j} - \bar{R})(G_{i,j} - \bar{G})$$

CSIRO

20 total CCFs (2 radio images x 10 number density maps)

Cross Correlation with MWA – Emission Upper Limits

Cross Correlation with MWA – Emission Upper Limits

Cross Correlation with MWA – Magnetic Field Limits

Cross Correlation S-PASS

Flux upper limit:

0.16 mJy arcmin⁻²

Magnetic field upper limit:

0.13 μG

- Single Dish 2.3 GHz All Sky
- Cross correlate with MHD simulation (Dolag)
 - Brown et al., 2017

Cross Correlation

Advantages:

• Enhance signals hidden in the noise

Caveats:

- Need models to interpret results physically
- Need to know (dirty) beam shape well
- Requires point source subtraction and/or model for point sources
- Galactic emission can interfere over large areas

Future Work

- Repeat with different data
- New MHD simulations
- Model for point sources

• Fit 2D source count to 2D histogram

- Can be two frequencies, two resolutions, Stokes I and polarised intensity
- Provides tighter constraints, uses more data, breaks degeneracies

Fit 2D source count to 2D histogram

• 2D P(D) analysis

- Can be two frequencies, two resolutions, Stokes I and polarised intensity
- Provides tighter constraints, uses more data, breaks degeneracies

MWA PH 2 – 150 MHz – 55" beam – 400 microJy instrumental noise ASKAP – 1.4 GHz – 10" beam – 10 microJy instrumental noise

• 2D P(D) analysis

- Fit 2D source count to 2D histogram
- Can be two frequencies, two resolutions, Stokes I and polarised intensity
- Provides tighter constraints, uses more data, breaks degeneracies

Two populations:

- AGN **α** = -0.85
- Star-forming **α** = -0.55

Two Frequencies:

- 150 MHz (MWA)
- 1400 MHz (ASKAP)

Cyan – Image P(D) Contours

Black Lines – Model P(D) Contours

• Fit 2D source count to 2D histogram

• 2D P(D) analysis

Can be two frequencies, two resolutions, Stokes I and polarised intensity

Hales et al., 2014

CSIRC

• Provides tighter constraints, uses more data, breaks degeneracies

Not as deep or as constrained

• Fit 2D source count to 2D histogram

- Can be two frequencies, two resolutions, Stokes I and polarised intensity
- Provides tighter constraints, uses more data, breaks degeneracies

• Fit 2D source count to 2D histogram

- Can be two frequencies, two resolutions, Stokes I and polarised intensity
- Provides tighter constraints, uses more data, breaks degeneracies

• Fit 2D source count to 2D histogram

- Can be two frequencies, two resolutions, Stokes I and polarised intensity
- Provides tighter constraints, uses more data, breaks degeneracies

• Fit 2D source count to 2D histogram

• 2D P(D) analysis

• Can be two frequencies, two resolutions, Stokes I and polarised intensity

- 2D P(D) analysis
- Stacking (point sources and diffuse/filaments)
- Radio to X-ray correlation
- Cross power spectrum
- Wavelet covariance
- 2D Angular power spectrum
- Combinations, e.g. confusion analysis + cross correlation

CSIRC

Summary & Conclusions

- Confusion can be a hindrance or a tool
 - Can use it to get constraints on counts below confusion and instrumental noise limits
 - Excess diffuse emission can be detected via confusion analysis
 - Can be extended to multiple dimensions
- Cross correlation technique can enhance signals below the noise
 - Need more / better models to interpret results
- Need to understand noise and beams well
- Statistical techniques can be powerful tools for reaching below the noise
- Understanding current and developing new techniques crucial for fully utilizing new large surveys

Thank you

Business Unit Name Presenter Name Presenter Title

t +61 2 9123 4567e firstname.surname@csiro.auw www.csiro.au/lorem

Business Unit Name Presenter Name Presenter Title

- t +61 2 9123 4567
- e firstname.surname@csiro.au
- w www.csiro.au/lorem

ADD BUSINESS UNIT/FLAGSHIP NAME www.csiro.au

