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e.g. Dwarfs



• Direct imaging

• Statistical methods:

• Confusion

• Cross Correlation

• Stacking

• Polarization:

• Faraday rotation from background AGN

• Dispersion from fast radio bursts

How Can We Detect It?



Diffuse Emission – Direct Imaging

Ferretti et al., 2012

• Diffuse emission in clusters
• Halos
• Mini-halos
• Relics
• But only few hundred detected (more coming now 

from low frequency surveys)

• Only bright sources ( >1mJy ) in high(er) mass 
clusters detected.

• Difficult to directly detect due to:
• low surface brightness
• Requires high sensitivity to large angular scales
• Sizes up to Mpc scales 
• Difficult for radio interferometer telescopes

• Bright Galactic foregrounds

• Bright point sources

• Faint point source confusion
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Confusion: Friend or Foe?
• Simulated Gaussian “Halo”

• 60” size
• 5 mJy total brightness
• 45” beam
• Addition of brighter and brighter point sources

• None brighter than 1mJy



Using Confusion
• Confusion is the blending of faint 

sources within a telescope beam

• PDF of image pixel histogram 
from confusion known as P(D)

• Confusion noise, σc  ( width of 
P(D) ) 
à governed by beam and 

source count



• Fitting of Image histogram à statistical estimate 
of source counts as faint as ~ σc

• Input
• Source count model
• Pixel size, beam shape(s)
• Instrumental noise

• Mean density of observed flux

• Can use any continuous source count model

• Node model
• Fixed position in Log(S)
• Fit amplitude of node in Log(dN/dS)
• Interpolate between nodes
• Set of connected power-laws

How? Probability of Deflection Noise limit



P(D) Source Count - Discrete

P(D) Source Count -Data
• JVLA 

• Lockman “Owen” Hole North

• 3 GHz single pointing

• C configuration

• Rms: 1.02 μJy/beam

• Beam: 8 arcsec

• Time: 50 hours

JVLA 3GHz Lockman Hole North



Confusion Diffuse Emission - Data
• Can try to statistically detect presence 

of sources too faint or diffuse to be 
detected normally

• Subtract point sources or use discrete 
source count model

• Example: ATCA
• ELAIS S1
• 7 pointing mosaic
• 1.7 GHz
• 2.5’ x 1’ beam
• RMS ~ 50 μJy
• Subtraction limit ~150 μJy

• Use ATLAS point source models to 
subtract bright sources and JVLA 
discrete count for un-subtracted 
sources 



Confusion Diffuse Emission - Results
• Can try to statistically detect presence 

of sources too faint or diffuse to be 
detected normally

• Subtract point sources or use discrete 
source count model

• Example: ATCA
• ELAIS S1
• 7 pointing mosaic
• 1.7 GHz
• 2.5’ x 1’ beam
• RMS ~ 50 μJy
• Subtraction limit ~150 μJy

• Use ATLAS point source models to 
subtract bright sources and JVLA 
discrete count for un-subtracted 
sources 

Model P(D) 
of faint
sources

Image P(D) 
compared 
to model
ß 3σ
difference



Confusion Diffuse Emission - Results

Model: 
Parabola

Model: 
Nodes



Confusion Diffuse Emission - Models
• Simulated model from Zandanel et al 

2014 of cluster haloes

Observed
points

Simulated 
points



Confusion Diffuse Emission - Models
• Simulated model from Zandanel et al 

2014 of cluster haloes

Observed
points

Simulated 
points

Good fit



Confusion Diffuse Emission
Advantages:
• Detection of emission below confusion level

• Possible to constrain models of cluster emission

Disadvantages / Caveats:
• Assumes emission smaller than (or roughly equal to) the beam size

• Requires point source subtraction and/or model for point sources

• Need to know beam shape(s) and noise properties well

Future work / Continuations:
• Repeat with different / larger area

• Compare results for regions with and without known diffuse emission

• Different (lower) frequency



How can we detect it?
• Direct imaging

• Statistical methods:

• Confusion

• Cross Correlation

• Stacking

• Polarization:

• Faraday rotation from background AGN

• Dispersion from fast radio bursts



Cosmic Web - Cross Correlation
• Galaxy number density à traces thermal baryon distribution à should correlate with 

diffuse synchrotron



• Galaxy number density à traces thermal baryon distribution à should correlate with 

diffuse synchrotron

2MASS Galaxy Distribution coded

by redshift 
(photo credit :Thomas Jarrett (IPAC/Caltech)

Simulated radio synchrotron 
(credit: Klaus Dolag)

Cosmic Web - Cross Correlation



• Galaxy number density à traces thermal baryon distribution à should correlate with 
diffuse synchrotron

• How correlated as a function of distance or angular scale?
• Unknown

• How correlated?
• Unknown

• Reasons for a positive correlation:
• AGN (core)
• Starbursts and disk emission
• AGN (WAT and NAT associated with clusters)
• Cluster halos
• Cluster relics
• Synchrotron cosmic web

• Reasons for a negative correlation:
• Galactic extinction (galaxy number counts down, synchrotron up)

Increasing angular 
scale

Cosmic Web - Cross Correlation



Cross Correlation with MWA
The MWA: 

• Frequency range: 80 – 300 MHZ

• 2048 dual polarization dipoles

• Number of antenna tiles: 128

• Number of baselines: 8128

• Collecting area: 2000 sq. meters

• FOV: 15 - 50 deg. (200 - 2500 sq. deg.)

• Polarization: I, Q, U, V 

Photo credit: Natasha Hurley-Walker

Good sensitivity to large angular scales,
low frequency, large field of view



• Field: EoR0 RA=0 Dec= -27
• υ = 180 MHz
• Beam 2.3’ – 2.9’
• σn= 0.6 – 0.96 mJy beam-1

• σc = 4.4 - 9.5 mJy beam-1

• Subtraction limit ~ 50 mJy

Full

Point source sub

Point source & Galaxy sub

Cross Correlation with MWA 



Cross Correlation with MWA - WISE Number Density



Cross Correlation with MWA

Δθ

Δθ

Take radial 
average



Cross Correlation with MWA

Diffuse emission 
à larger than beam

Point Sourcesà
smaller than beam

So how much diffuse
is there ???

Still some point
source contribution



Cross Correlation with MWA 

20 total CCFs 
(2 radio images x 

10 number density maps)



Cross Correlation with MWA – Emission Upper Limits

Galaxy number 
density convolve

Gaussian 
Smoothing

Diffuse number 
density model

convolve
Diffuse number
density model

Radio image 
beam

Diffuse radio 
sky model



Cross Correlation with MWA – Emission Upper Limits

Scale CCF until > 3σ

0.09 < S [mJy beam-1] < 2.2

0.01< S [mJy arcmin-2] < 0.3   

Diffuse radio 
sky model

Cross correlate Galaxy number 
density

CCF



1	<	K0 <	300		0.01	<	η <	1	 -0.6	<	α	<	-2.25
• 0.03	<	Beq [μG]	<	1.98	

K0=100 η=1.0		α	=	-1.25
• 0.22	<	Beq0 [μG]	<	0.62

Cross Correlation with MWA – Magnetic Field Limits 

20 Vernstrom et. al

Figure 16. As for Fig. 14, but for the cross correlations of SUB images and WISE maps convolved with di↵use Gaussian functions of
1, 2, 3, and 4Mpc and dirty beams, scaled by K to yield a 3� detection at 3Mpc. From left to right top to bottom the plots show the
CCF of the radio image with WISE Z1, WISE Z2, WISE Z3, WISE Z4, WISE Z5 and the sum map WISE.

and BCMB is the cosmic microwave background magnetic
field. Averaging over all redshifts, assuming a mean gas over-
density of n/ncr ' 10, and rearranging eq. (5) can be simpli-
fied to eq. (3) of Vazza et al. (2015) giving the mean magnetic
field of the WHIM,

BHA ' 0.05µG

s
IWHIM

5⇥ 10�3 Jy deg�2
�
100MHz

⌫

�↵ �
⇠

10�3

� . (6)

We use this relation to obtain new magnetic field upper lim-
its by converting the Jy deg�2 factor to Jy beam�1 and us-
ing the K�GDB flux density limits in place of IWHIM. If we
use the same range of values for ↵ as used in the equipar-
tition case and use a range of values for ⇠ of 5 ⇥ 10�5 
⇠  0.025 then we obtain values for BHA in the range
0.03  BHA [µG]  5.86. If we again set ↵ = �1.25 and
⇠ = 5⇥ 10�3 we obtain 0.09  BHA0 [µG]  0.41, which are
consistent with the values obtained for Beq0. The values for
BHA0 are also listed in Table 4.

While these limits on their own are not enough to al-
low us to discriminate between any competing magnetism
models, they do allow us to investigate future observational
requirements for detection. In order to see how sensitive
an image would need to be for di↵erent B values, we can
invert eq. (4) and eq. (6) to find the di↵erent flux den-
sity values for a given magnetic field strength. We com-
puted these flux densities using the same ranges for K0,
⌘, ⇠, and ↵ as above and magnetic field strength values of

1 ⇥ 10�9  Beq [G]  1 ⇥ 10�5, using all of the ✓D values
for l, both sets of beam sizes for the two radio images, and
the hzi from the di↵erent galaxy number density maps. Fig-
ure 18 shows the minimum and maximum flux density range
as well as the mean flux density for a given Beq or BHA from
all of the values. Also shown in Fig. 18 is the minimum and
maximum range of the K�DB values, as well as the radio im-
age rms values of 11.5mJy beam�1 for the SUB radio image
and 8.7mJy beam�1 for SUB-FT.

The cross correlation with LSS tracers has allowed lim-
its on the cosmic web flux density (K�DB) one to two orders
of magnitude below the image rms values, with resulting Beq

upper limits in the range of 0.03  Beq [µG]  1.98 and
BHA upper limits in the range of 0.03  BHA [µG]  5.86.
Values of Beq ' 0.1µG result in values of 1 ⇥ 10�6 
S [mJy beam�1]  0.1, which would require image rms val-
ues of 1 ⇥ 10�4  S [mJy beam�1]  0.5. However, BHA '
0.1µG results in values of 9⇥10�4  S [mJy beam�1]  0.5,
requiring image rms values of 0.08  S [mJy beam�1]  2.0.
From Fig. 18 we can see that if the cosmic web has a mag-
netic field strength in the 1–10 nG range (or less) then de-
tection via this method (even with the SKA) may not be
possible; with the predictions being slightly more optimistic
in the HA case. The slope of the S(B) line is most dependent
on the value of ↵ and the underlying model for the magnetic
field. It is clear that in order to extract more physical infor-
mation from this method, data (and corresponding CCFs)

MNRAS 000, 1–25 (2016)

Vazza et al., 2015



• Single Dish 2.3 GHz All Sky
• Cross correlate with MHD 

simulation (Dolag)
• Brown et al., 2017

Cross Correlation S-PASS

Simulations

SPASS

SynchrotronElectron density

SPASS

Sim

Masked



Cross Correlation S-PASS
• Single Dish 2.3 GHz All Sky

• Cross correlate with MHD 

simulation (Dolag)

• Brown et al., 2017

Flux upper limit:
0.16 mJy arcmin-2

Magnetic field upper limit:

0.13 μG



Cross Correlation
Advantages:
• Enhance signals hidden in the noise

Caveats:
• Need models to interpret results physically

• Need to know (dirty) beam shape well

• Requires point source subtraction and/or model for point sources

• Galactic emission can interfere over large areas

Future Work
• Repeat with different data

• New MHD simulations

• Model for point sources
Planelles & Quillis (2013)



Other Methods
• 2D P(D) analysis

• Fit 2D source count to 2D histogram

• Can be two frequencies, two resolutions, Stokes I and polarised intensity

• Provides tighter constraints, uses more data, breaks degeneracies

Two populations:
• AGN α = -0.85
• Star-forming α = -0.55 log10

∂2N(S1,S2 )
∂S1∂S2

"
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Two Frequencies:
• 150 MHz (MWA)
• 1400 MHz (ASKAP)



Other Methods
• 2D P(D) analysis

• Fit 2D source count to 2D histogram

• Can be two frequencies, two resolutions, Stokes I and polarised intensity

• Provides tighter constraints, uses more data, breaks degeneracies

Two populations:
• AGN α = -0.85
• Star-forming α = -0.55

MWA PH 2 – 150 MHz – 55” beam –
400 microJy instrumental noise 

ASKAP – 1.4 GHz – 10” beam –
10 microJy instrumental noise 



Other Methods
• 2D P(D) analysis

• Fit 2D source count to 2D histogram

• Can be two frequencies, two resolutions, Stokes I and polarised intensity

• Provides tighter constraints, uses more data, breaks degeneracies

Two populations:
• AGN α = -0.85
• Star-forming α = -0.55

Cyan – Image 
P(D) Contours

Black Lines –
Model P(D) 
Contours

Two Frequencies:
• 150 MHz (MWA)
• 1400 MHz (ASKAP)



Other Methods
• 2D P(D) analysis

• Fit 2D source count to 2D histogram

• Can be two frequencies, two resolutions, Stokes I and polarised intensity

• Provides tighter constraints, uses more data, breaks degeneracies

Hales et al., 2014

Not as deep or 
as constrained
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Figure 13. Upper panel: Reproduction of linearly polarized component
and source counts from Fig. 12. The dotted portions of the curves at L <
0.1 mJy indicate extrapolations beyond the observed ATLAS DR2 data, as-
suming an unchanging distribution of fractional polarization (though note
comments in Section 2.4). Middle panel: Estimated sky density for com-
ponents and sources above a given linearly polarized flux density. Lower
panel: Mean spacing between linearly polarized sources as a function of
the faintest detected sources.

lowing our conclusions presented in Section 2.2 regarding poten-
tial correlation of the distribution of fractional polarization with
total flux density, we assume that fΠ(Π) is independent of to-
tal intensity flux density. This assumption may not be suitable for
I ! 10mJy for which our ATLAS data become sparse. Second, our
model for fΠ(Π) may only be relevant for surveys with resolution
FWHM " 10′′. Surveys with finer resolution may encounter less
beam depolarization across components, and thus recover higher
average levels of fractional polarization (in Section 5 of Paper I
we found that < 17% of polarized ATLAS components were re-
solved). We note that surveys with coarser resolution will incur
increased blending between components within multi-component
sources, resulting in a greater number of low-Π sources than ob-
served for ATLAS due to enhanced beam depolarization. And third,
given that all polarized components in ATLAS DR2 are associated
with AGNs, we restrict our model for fΠ(Π) to the characterisation
of AGNs, rather than the characterisation of all radio sources in-
cluding SFGs and individual stars. We do not attempt to differenti-
ate between different types of AGNs or their components within our
model, i.e. FRI/FRII/radio quiet/core/lobe. We discuss fractional
polarization levels for SFGs in Section 3.2.

We modelled fΠ(Π) by qualitatively fitting two independent
sets of ATLAS data: (i) the fractional polarizations of components,
groups, and sources displayed in Fig. 4, importantly taking into ac-
count upper limits, and (ii) the differential number-counts for polar-
ized components displayed in Fig. 11. We obtained a concordance

Figure 14. Proposed models of 1.4 GHz fractional linear polarization; see
Section 2.4 for details. The solid curve represents a fit to the ATLAS DR2
data, and is the distribution assumed in this work. The vertical axis is linear
in the upper panel and logarithmic in the lower panel. The curves presented
here are compared to the fractional polarization data in Fig. 4 (also Fig.’s
5-7 and 9) and to the number count data in Fig. 11 (also Fig. 16).

fit to these data by modelling fΠ(Π) using a log-normal distribu-
tion,

fΠ (Π) =
1

Πσ10 ln(10)
√
2π

exp

{

− [log
10
(Π/Π0)]

2

2σ2
10

}

, (5)

where the parameters Π0 and σ10 are the median fractional polar-
ization and scale parameter, respectively, given by best-fit values
Π0 = 4.0% and σ10 = 0.3. The fit given by Equation (5) is con-
sistent with the result obtained by analysing the fractional polariza-
tion data alone, using the product-limit estimator (Kaplan & Meier
1958) as implemented within the survival2 package in the R3

environment. The mean level of fractional polarization for the dis-
tribution in Equation (5) is given by log

10
µΠ = log

10
(Π0) +

0.5 ln(10)σ2
10, which equates to µΠ = 5.1%. For values of Π0 or

σ10 larger than the best-fit values above, we found that the H03∗fΠ

model predicted differential counts in excess of the observed AT-
LAS counts. For smaller values, the predicted counts were defi-
cient.

We plot Equation (5) in Fig. 14. For comparison we also
plot the 1.4 GHz fractional polarization distributions proposed
by Beck & Gaensler (2004), Tucci et al. (2004), and Taylor et al.
(2007). For clarity we explicitly document each of these distribu-
tions, as follows. Beck & Gaensler (2004) investigated the distribu-
tion of fractional polarization for NVSS sources with I > 80 mJy,
which they fit using the following quasi log-normal form,

fB04 (Π) =
aB04

Π ln(10)
exp

{

− [log10(Π/ΠB04)]
2

2σ2
B04

}

, (6)

2 http://cran.r-project.org/web/packages/survival/index.html
3 http://www.r-project.org
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Other Methods
• 2D P(D) analysis

• Fit 2D source count to 2D histogram

• Can be two frequencies, two resolutions, Stokes I and polarised intensity

• Provides tighter constraints, uses more data, breaks degeneracies
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tal intensity flux density. This assumption may not be suitable for
I ! 10mJy for which our ATLAS data become sparse. Second, our
model for fΠ(Π) may only be relevant for surveys with resolution
FWHM " 10′′. Surveys with finer resolution may encounter less
beam depolarization across components, and thus recover higher
average levels of fractional polarization (in Section 5 of Paper I
we found that < 17% of polarized ATLAS components were re-
solved). We note that surveys with coarser resolution will incur
increased blending between components within multi-component
sources, resulting in a greater number of low-Π sources than ob-
served for ATLAS due to enhanced beam depolarization. And third,
given that all polarized components in ATLAS DR2 are associated
with AGNs, we restrict our model for fΠ(Π) to the characterisation
of AGNs, rather than the characterisation of all radio sources in-
cluding SFGs and individual stars. We do not attempt to differenti-
ate between different types of AGNs or their components within our
model, i.e. FRI/FRII/radio quiet/core/lobe. We discuss fractional
polarization levels for SFGs in Section 3.2.

We modelled fΠ(Π) by qualitatively fitting two independent
sets of ATLAS data: (i) the fractional polarizations of components,
groups, and sources displayed in Fig. 4, importantly taking into ac-
count upper limits, and (ii) the differential number-counts for polar-
ized components displayed in Fig. 11. We obtained a concordance

Figure 14. Proposed models of 1.4 GHz fractional linear polarization; see
Section 2.4 for details. The solid curve represents a fit to the ATLAS DR2
data, and is the distribution assumed in this work. The vertical axis is linear
in the upper panel and logarithmic in the lower panel. The curves presented
here are compared to the fractional polarization data in Fig. 4 (also Fig.’s
5-7 and 9) and to the number count data in Fig. 11 (also Fig. 16).

fit to these data by modelling fΠ(Π) using a log-normal distribu-
tion,
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where the parameters Π0 and σ10 are the median fractional polar-
ization and scale parameter, respectively, given by best-fit values
Π0 = 4.0% and σ10 = 0.3. The fit given by Equation (5) is con-
sistent with the result obtained by analysing the fractional polariza-
tion data alone, using the product-limit estimator (Kaplan & Meier
1958) as implemented within the survival2 package in the R3

environment. The mean level of fractional polarization for the dis-
tribution in Equation (5) is given by log
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10, which equates to µΠ = 5.1%. For values of Π0 or

σ10 larger than the best-fit values above, we found that the H03∗fΠ

model predicted differential counts in excess of the observed AT-
LAS counts. For smaller values, the predicted counts were defi-
cient.

We plot Equation (5) in Fig. 14. For comparison we also
plot the 1.4 GHz fractional polarization distributions proposed
by Beck & Gaensler (2004), Tucci et al. (2004), and Taylor et al.
(2007). For clarity we explicitly document each of these distribu-
tions, as follows. Beck & Gaensler (2004) investigated the distribu-
tion of fractional polarization for NVSS sources with I > 80 mJy,
which they fit using the following quasi log-normal form,
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Other Methods
• 2D P(D) analysis

• Fit 2D source count to 2D histogram

• Can be two frequencies, two resolutions, Stokes I and polarised intensity

• Provides tighter constraints, uses more data, breaks degeneracies
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Other Methods

• 2D P(D) analysis

• Stacking  (point sources and diffuse/filaments)

• Radio to X-ray correlation

• Cross power spectrum 

• Wavelet covariance

• 2D Angular power spectrum

• Combinations, e.g. confusion analysis + cross correlation



Summary & Conclusions
• Confusion can be a hindrance or a tool

• Can use it to get constraints on counts below confusion and instrumental noise limits
• Excess diffuse emission can be detected via confusion analysis
• Can be extended to multiple dimensions

• Cross correlation technique can enhance signals below the noise
• Need more / better models to interpret results

• Need to understand noise and beams well 

• Statistical techniques can be powerful tools for reaching below the noise

• Understanding current and developing new techniques crucial for fully utilizing new large surveys
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