Introduction to VLBI (with ALMA)

ALLEGRO, Leiden Observatory / Nijmegen University, the Netherlands

- RadioNet has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730562

Outline

1. What is VLBI?

2. Why VLBI at mm-waves (mmVLBI)?

3. How does VLBI with ALMA work?

Creates a virtual radio telescope the size of the earth

VLBI: Key Features

(sub-) milliarcsecond resolution imaging
 AU-scale in MW, pc-scale extragalactic
 Astrometry of microarcsecond precision

....but.....

Requires high surface brightness: T_b > 10⁷ K
 No <u>thermal</u> emission observable
 Ideal to probe synchrotron (continuum), maser (line) emission

VLBI vs. shorter-BI Additional difficulties

- More stringent requirements on correlator model to avoid de-correlating during coherent averaging
- Each antenna has its own "clock" (H-maser) and own equipment (IF-chain, BBCs, etc.)
- Sparser u-v coverage
- No truly point-like (primary flux) calibrators in sky

VLBI vs. shorter-BI Delay/Rate Calibration

- Each antenna has its own "clock" (H-maser) and own equipment (IF-chain, BBCs, etc.)
- Differing delays & rates per station/subband/pol
- Delay $\rightarrow \partial \phi / \partial \nu$ (phase-slope across band)
- Rate $\rightarrow \partial \phi / \partial t$ (phase-slope vs.time)
- Regular variations: clocks, source-structure, etc.
- Irregular variations: propagation, instrumental noise
- Solving for these variations is the essence of the so-called fringe-fitting

VLBI Arrays

Cambridge/MERLIN UK

Effelsberg (DE)

The EVN (European VLBI Network)

Jodrell Bank (UK)

WSRT (NL)

DSN Robledo (ES),

Onsala Space Obs (SE) Comp

Torun (PL)

Noto (IT)

Composed of existing antennas

- generally larger (32m 100m)
 - sensitive baselines
- heterogeneous,
 - generally slower slewing

Frequency coverage [GHz]:

1.4/1.6, 5, 6.0/6.7, 2.3/8.4, 22

Real-time e-VLBI experiments

- Target of Opportunity
- ~10 scheduled e-VLBI days per

year

VLBI Arrays The VLBA (Very Long Baseline Array)

Homogeneous array (10x 25m)

- planned locations, dedicated array
- Baselines~8600–250 km (~50 km w/ JVLA)
- Faster slewing
- HSA (+ Ef + Ar + GBT + JVLA)

Frequency agile

down to 0.329, up to 86 GHz

Extremely large proposals

- Up towards 1000 hr per year
- Globals: EVN + VLBA (+ GBT + JVLA)

- proposed at EVN proposal deadlines (1Feb, 1Jun, 1Oct)

- VLBA-only proposals: 1Feb, 1Aug

VLBI Arrays East Asian VLBI Networks

- Chinese (CVN): 4 ants., primarily satellite tracking
- Korean (KVN): 3 ants., simultaneous 22, 43, 86, 129 GHz
- VERA: 4 dual-beam ants., maser astrometry 22-49 GHz
 KaVA == KVN + VERA (issues separate KaVA calls for proposals)
- Japanese: various astronomical & geodetic stations

2. VLBI at mm-waves (mmVLBI)

mmVLBI: Why?

Resolve jet collimation region within tens of Schwarzschild Radii R_s along jet

 $\begin{array}{l} R_{\rm Sch} = 2 \; G M_{\rm BH} \, / c^2 \\ \theta_{\rm Sch} = \; R_{\rm Sch} \, / D \\ \approx 0 \; .02 \; {\rm nas} \\ (\; M_{\rm BH} \, / M_{\odot}) / (\rm kpc \; / D) \end{array}$

Two promising targets: Sgr A*: $D \sim 8 \text{ kpc}, M_{BH} \sim 4 \times 10^6 M_{\odot}$ $\Rightarrow \theta_{sch} \sim 10 \mu as$ M87 : $D \sim 17 \text{ Mpc}, M_{BH} \sim 7 \times 10^9 M_{\odot}$ $\Rightarrow \theta_{sch} \sim 8 \mu as$

mmVLBI: Why?

3D GRATHD simulations of SMBHs disks/jets

43 GHz / 7mm

Jet

Disk

86 GHz / 3mm

230 GHz / 1.3mm

Moscibrodzka et al.

mmVLBI: Why? The Shadow of a Black Hole

More face-on

More edge-on

Bardeen 1973, Luminet 1979

Falcke, Melia, Agol (2000)

Bronzwaer et al. Davelaar, et al.

mmVLBI: Why?

General science case

- Imaging the event horizon of the black hole at the center of the Galaxy
- Testing General Relativity (GR) and/or searching for alternative theories
- Studying the origin of AGN jets and jet formation
- Cosmological evolution of galaxies and Black Holes (BHs), AGN feedback
- Masers in the Milky Way (in evolved stars and star-forming regions)
- Extragalactic emission lines and astro-chemistry
- Redshifted absorption lines in distant galaxies and study of their ISM
- Pulsars, neutron stars, and X-ray binaries
- Testing cosmology and fundamental physical constants

For a full review, see Fish et al. 2013 arXiv1309.3519

3. VLBI with ALMA: How does it work?

VLBI with ALMA I

- The ALMA Phasing Project (APP) has developed a beamformer for ALMA that can aggregate the entire collecting area of the array into a single, very large aperture (equivalent to an 84m diameter telescope). In such a phased-array all antennas are combined to act jointly as a single "giant" dish.
- Phased-ALMA as an "element" in a VLBI array offered from **Cycle 4**
 - B3 with the GMVA (128 MHz BW, dual pol., 2 Gbps recording)
 - B6 with the EHT (~4 GHz BW, dual pol., 32 Gbps recording)
 - Up to ~41 phased (12-m) antennas (≈73-m parabolic dish)
- Cycle 4/5/6 proposals deadlines on April 2016/7/8
 - VLBI proposals assessed rigorously against other ALMA proposals

VLBI with ALMA II

- Past Observations: 1 session on April 2-15 2017
 - Apr 2-4 GMVA (3mm) and Apr 5-11 EHT (1.3mm)
- Next Observations: 1 session on April 15-27 2018
- VLBI data correlation :
 - Haystack/MIT (EHT Low-band)
 - MPIfR/Bonn (EHT High-band and GMVA).

mmVLBI Networks with ALMA

Global mm VLBI Network (GMVA): λ 3mm Effelsberg, IRAM-PV, Ys, GBT, 8 x VLBA + ALMA

Event Horizon Telescope (EHT): λ 1.3mm SPT, APEX, LMT, SMT, SMA/JCMT, PV + ALMA

- GMVA @3mm (128 MHz BW, dual pol., 2 Gbps recording)
- EHT @1.3mm (~4 GHz BW, dual pol., 32 Gbps recording)

Arrays: 3 mm Global man VLBI Network (GMVA)

ALMA, Effelsberg, IRAM-PV, Ys, GBT, 8 x VLBA (+LMT, Onsala, Metsahövi, NOEMA, KVN, LLMA, AMT,...)

- ~2 weeks per year
- Coordinated from MPIfR Bonn

Arrays: 1 mm The Event Horizon Telescope (EHT)

ALMA, IRAM-PV, LMT, SPT, APEX, SMT, SMA/JCMT (+Greenland, NOEMA, LLAMA, AMT,...)

Coordinated from Haystack/MIT

EHT 2017 Campaign

April 5 -11 2017

- 8 telescopes, 6 sites (Largest 1mm VLBI experiment ever tried)
- 3 new stations, one dropped
- 5 observing nights in 10 day period (used all allocated time at ALMA: 62 hours)
 - ~4 PB raw data
- Overall excellent weather!
- Only minor technical hiccups (fraction of lost data small)

VLBI with ALMA Scheduling

- VLBI projects are different from normal ALMA projects in that the targets need to be observed at (the same) specified times at all sites in the VLBI array
- The schedule is captured in a VLBI EXperiment (VEX) file (includes info about VLBI sites, scan timing, and other ancillary information)

```
scan No0015;
* intent = "ALMA:AUTOPHASE DETERMINE"
     start=2017y100d01h59m00s; mode=1mmlcp; source=3C279;
                    0 sec: 300 sec: 4984.603 GB:
     station=Aa:
                                                            : 1;
                                                    :
     station=Ap:
                    0 sec: 300 sec: 4984.603 GB:
                                                            : 1;
                                                    :
     station=Lm:
                    0 sec: 300 sec: 4984.603 GB:
                                                            : 1;
                                                    :
                    0 sec: 300 sec: 4984.603 GB:
     station=PV:
                                                            : 1;
                                                    :
endscan;
scan No0016;
* intent = "ALMA:AUTOPHASE DETERMINE"
     start=2017y100d02h09m00s; mode=1mmlcp; source=M87;
     station=Aa:
                    0 sec:
                           240 sec: 5292.294 GB:
                                                            : 1;
                                                    :
                    0 sec: 240 sec: 5292.294 GB:
     station=Ap:
                                                            : 1;
                                                    :
     station=Lm:
                    0 sec: 240 sec: 5292.294 GB:
                                                            : 1;
                                                    :
     station=PV:
                    0 sec: 240 sec: 5292.294 GB:
                                                            : 1;
                                                    :
                    0 sec: 240 sec: 4246.143 GB:
     station=Az:
                                                              1;
                                                    :
endscan;
```

VLBI with ALMA Scheduling

- Expert Parameters:
 - <u>ArrayRadius</u> is 180 (m)
 - <u>VLBIExpName</u> is mg002 (vex)
 - DropRecorder is BB_2,BB_3,BB_4
 - <u>ReferenceAntenna</u> is DA61
 - <u>EfficiencyArray</u> is DA60,PM04
 - SessionControl Enabled (1)
- First VLBI Scan is 2017y092d21h00m00s No0081
 - Run-#0 from 2017y092d21h00m00s to 2017
 - Exec UID: uid://A002/Xbeae14/X10a
 - Sum Antenna: DV03
 - Reference Antenna: DA61
 - Other Phased Antennas:

DA41, DA42, DA44, DA46, DA47, DA48

Total # Phased: 41

Comparison Antennas: DA60,PM04

The VEX2VOM software translates information from the VEX file into OT expert parameters so that the observing script can successfully execute the VLBI Observing Mode (**VOM**)

VLBI with ALMA Observation Setup

- Sufficient 12-m antennas (30-40) with working band 3 and/or 6 receivers in a relatively compact configuration
- use the shadowing calculation to determine which reference antenna to use (in case of compact configuration)
- make sure you have an interactive or dynamic array (for SB execution)
- make sure that the sum antenna is out of the array (DV03 in Cycle 4)

VLBI with ALMA Archiving

- ALMA
 - archives its own interferometric data products
 - Looks like a normal ALMA dataset with ALMA- and APPmode scans
 - Delivered to PIs after QA2
 - Publicly available after normal proprietary period.
- VLBI data
 - The VLBI Correlators archive the **correlated** data
 - the raw data will eventually be discarded (same disk packs are re-used in the following campaign)

VLBI with ALMA Data Structure

- In VLBI, ALMA observes in two modes: VLBI mode and ALMA mode
- ALMA data are divided in two subsets:
 - ALMA-mode scans (phasing system OFF)
 - APP-mode scans (phasing system ON)
- *TelCal* (the ALMA online data reduction software) applies phasing corrections in phase and delay at the correlation stage which are different from normal ALMA observations

=> the ALMA-mode and APP-mode scans are not compatible calibration-wise, so separate calibrations are needed

VLBI with ALMA Data Structure

BAND	Central Freq. (GHz)				Chan. Width	Integ. time		
	$\mathrm{spw}0$	$\mathrm{spw}1$	$\mathrm{spw}2$	$\mathrm{spw}3$	\mathbf{kHz}	(s)		
$1\mathrm{mm}$	213.1	215.1	227.1	229.1	7812.5	4.03		
$3\mathrm{mm}$	86.268	88.268	98.328	100.268	7812.5	4.03		

Table 1: ALMA correlator setups.

GMVA records only the lowest BB_1 (VLBIRecorder1): SPW=0 (86.268 GHz) is the critical one EHT records only the two highest BB_3 & BB_4(VLBIRecorders3 & 4): spw=2,3 (226 & 228 GHz)

Scans

Observed from 03-Apr-2017/06:55:08.2 to 03-Apr-2017/15:19:42.7 (UTC)

ObservationID = 0	ArrayID = 0													
Date Timerange (UTC) Scan	FldId FieldName	nRows	SpwIds	Average	Interval	l(s)	ScanInte	nt					
03-Apr-2017/06:55:08.2 - 0	7:00:10.6 3	0 4C 09.57	297000	[0,1,2,3]	3] [4.03	, 4.03, 4	4.03, 4.	03] [CAL	IBRATE_	ANDPASS#ON	_SOURCE,C/	ALIBRATE_W	VR#ON_SOUR	RCE]
07:01:18.4 - 0	7:03:51.6 5	1 Callisto	150480	[0,1,2,3]	3] [4.03	, 4.03, 4	4.03, 4.	03] [CAL	IBRATE_	LUX#ON_SOU	RCE,CALIB	RATE_WVR#0	N_SOURCE]	
07:04:58.1 - 0	7:06:59.1 7	0 4C 09.57	118800	[0,1,2,3]	3] [4.03	4.03, 4	4.03, 4.	03] [CAL	IBRATE_	OLARIZATIO	N#ON_SOUR	CE,CALIBRA	TE_WVR#ON_	_SOURCE]
07:07:27.9 - 0	7:08:00.1 8	2 J1744-3116	31680	[0,1,2,3]	3] [4.03	, 4.03, 4	4.03, 4.	03] [CAL	IBRATE_	HASE#ON_SO	URCE, CALI	BRATE_WVR#	ON_SOURCE	
07:19:27.9 - 0	7:19:44.1 10	0 4C 09.57	15840	[0,1,2,3]	3] [4.03	, 4.03, 4	4.03, 4.	03] [CAL	IBRATE_	PPPHASE_AC	TIVE#ON_S	DURCE]		
07:19:46.1 - 0	7:20:02.3 11	0 4C 09.57	15840	[0,1,2,3]	3] [4.03	, 4.03, 4	4.03, 4.	03] [CAL	LORATE_	APPPHASE_AC	TIVE#ON_S	DURCE]		
07:20:04.3 - 0	7:20:20.4 12	0 4C 09.57	15840	[0,1,2,3]	3] [4.03	, 4.03, 4	4.03, 4.	03] [CAL	IBRATE_/	APPPHASE_AC	TIVE#ON_S	OURCE]		
07:20:22.5 - 0	7:20:38.6 13	0 4C 09.57	15840	[0,1,2,3]	3] [4.03	, 4.03, 4	4.03, 4.	03] [CAL	IBRATE_/	PPPHASE_AC	TIVE#ON_S	OURCE]		
07:20:40.7 - 0	7:20:56.8 14	0 4C 09.57	15840	[0,1,2,3]	3] [4.03	4.03	t.03, 4.	03] [CAL	IBRATE_	APPPHASE_AC	TIVE#ON_S	DURCE]		
07:20:58.9 - 0	7:21:15.0 15	0 4C 09.57	15840	[0,1,2,3]	3] [4.03	+.03, 4	4.03, 4.	03] [CAL	IBRATE_/	PPPHASE_AC	TIVE#ON_S	OURCE]		

ALMA scans on bandpass, flux, polarization, phase : OK

VLBI with ALMA Calibration / QA2

- In VLBI mode, ALMA still produces ordinary ASDMs (ALMA Science Data Model), but include also:
 - CalAPPPhase ASDM table (i.e., list of phased antennas vs. time)
 - APP- and ALMA-mode scans
- Calibration / QA2 is needed for 2 reasons:
 - Deliver calibration products to the PIs (as any standard ALMA project)
 - Deliver calibration products to the VLBI correlators to run the *PolConvert* program to convert VLBI visibilities from linear basis into a circular polarization basis

VLBI with ALMA Calibration / QA2

- Necessarily the observations need to be executed as polarization observations
 - requires continuous monitoring of polarized calibrator(s)
- Calibration is divided in two parts:
 - Ordinary calibration, based on XX and YY alone (bandpass, phase, amplitude). The bandpass and phase are solved twice.
 - Polarization calibration: X/Y phase offset (solved twice), calibrator's QU, and D-terms
- Calibrations need to be transferred between ALMA and APP scans.
 - calibrator(s) need to appear in both scans modes

VLBI with ALMA Calibration / QA2

Calibration

thesteps = []	Data Import
step_title =	<pre>{0: ' Import of the ASDMs', 1: ' Fix of SYSCAL table times', 2: ' Listobs, get Tsys, and split ALMA-calibration 3: ' A priori flagging (autocorrs and phased-signal 4: ' Apply Tsys, split out science SPWs, concatenat 5: ' Save original flags'.</pre>	scans (for ordinary QA2)', L antenna)', te, listobs, and build CALAPP table',
	<pre>6: ' Initial flagging', 7: ' Putting a model for the flux calibrator(s)', 8: ' Save flags before bandpass cal', 9: ' Bandpass calibration', 10: ' Save flags before gain cal', 11: ' Gain calibration', 12: ' Apply ordinary calibration', 13: ' Split calibrated data'.</pre>	Ordinary Calibration (XX,YY) Separated for ALMA and APP scans
	 14: 'Save flags before polarization calibration', 15: 'Polarization calibration', 16: 'Save flags before applycal', 17: 'Apply calibration and split corrected column' 18: 'Save flags after applycal', 19: 'Run the imaging script on ALL sources', 20: 'Tar up APP deliverables and make QA2 package' 	Polarization Calibration (XX,YY, XY, YX) Separated for ALMA and APP scans Imaging and Packaging of Products

What's Next for the VLBI with ALMA?

- Cycle 4 included only a subset of fully envisioned capabilities of the APP. <u>Limitations include:</u>
 - Phasing in Band 3 (3 mm) or Band 6 (1 mm) only :
 Extension of Phasing Capabilities to Band 7?
 - Continuum only (no spectral line mode)
 - Fixed tunings
 - Targets must be bright (≥500 mJy on baselines <1 km)
- Cycle 5 ALMA VLBI capabilities (and likely Cycle 6) will be nearly identical to Cycle 4
- Developments from current ALMA N.A. Study Projects will not be available until Cycle 7
 - ALMA NA has approved the Implementation, so study project work is now contingent on ALMA Board Approval

VLBI with ALMA Why is it so important?

GRMHD

mm-VLBI data simulator

Summary

- ALMA in VLBI mode works!
- First EHT/GMVA campaign with ALMA conducted in April 2017
- We have developed a general script for the calibration and QA2 of ALMA observations in VLBI mode, automatic PI-script generation and packaging
- Successful QA2 for all projects (all 2017 data delivered to PIs)

Next deadline for VLBI: ALMA cycle 6 proposal call!