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The big cosmological questions
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Cosmology has had inflationary LCDM as a standard model for
structure formation for ~ 25 years

— Established during 1990s using galaxy clustering + CMB
— Validated independently by SNe and BAO
— Has survived huge improvements in data precision

But we've never been happy



The big cosmological questions

v/ = via galaxy surveys

* Nature of dark energy
— Does itevolve? v
— Does it fluctuate?
— Is it a field that couples to dark matter? v

* Nature of dark matter
— Thermal relic WIMP or scalar field?
— Mass(es) and cross-sections?
— Neutrino hierarchy? v

* Nature of gravity?

— Distinctive non-Friedmann expansion history? v
— Non-standard fluctuation growth? v



The big cosmological questions

* [nitial conditions
— Did inflation happen?
— Tensor modes?
— Isocurvature modes?
— Non-Gaussianity? v

* Fine tunings
— Why are DM and baryon densities similar?
— Why is the vacuum density so low?
— Is there a multiverse? v
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BAO: the acoustic
horizon in SDSS

Acoustic horizon at drag era
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20 years of SDSS (2007.08991)
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D(z) zoom In

— Q= 0.315
LISH o — 0275
= 110}
N
_|_
L
=
= 1.05}
~
N
=
~
5 | _
= 1.00f
=TTt
0.95} Q.. = 0.297 £ 0.018
107 107! 10°

redshift z

BAO less constraining treated as an empirical ruler



m(v,) / eV

Neutrinos
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Free-streaming erases neutrino fluctuations

Reduced growth rate for k >~ 0.01 - reduced og
Claims of detection at m = 0.36 +/- 0.10 eV (1403.4599)
Planck++ 2018: m <0.12 eV (0.06 eV smallest possible)
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Redshift-space distortions as a
probe of gravity

~ cz/H — (CZCOS —l- 5@)/H

Mass: measure f;, = dlnd/dlna (=~ Q%> for standard gravity)
Galaxies: measure 5 = f;/b; b unknown, but f,og observable

P(k) approximately Kaiser-Lorentz: P(k, 1) = Preal(1 + 8p?)*(1 + k%02/2)~!

Infer B from quadrupole-to-monopole ratio in anisotropic power spectrum
Use simulations to assess deviations from simple distortion model (and to
assign errors)



2 decades of RSD

Split 2-point correlations in transverse and radial directions
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2001: 2dFGRS 8% on f,05 2014: SDSS LRG 2.5% on f,05



Growth rate: Einstein OK at 5-10%
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DESI, Euclid will push towards <1% precision at higher z



The modified gravity programme

S[guu,qb]:/d“w\/_lz 1 E[g,w,qﬁ] + L [gW,zPM]]
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Horndeski Lagrangian:
general form of scalar-tensor theory for 2"d-order equations

— constrained by ¢c(GW)=c(EM), but still much freedom
— strong activity in linear and nonlinear phenomenology
— why should it look so like LCDM?



Non-Gaussianity

Potentially deepest impact of LSS on initial conditions

Spectro LRG
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Scale-dependent bias limits fy, with precision ~ 25
— less strong than Planck, but DESI/Euclid should reach fy, ~ 1



What can ATLAS contribute?



A Century+ of galaxy redshifts
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Mid-2020s: 0.1% cosmology

BAO distance scale error
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Sensitivity to Dark Energy

_ cC z dz
D(z) —Efo [ (142) 3, (14 2) 3+ (1+2)2] /2
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Dark Energy affects H(z), D(z) and
perturbation growth g(z)

Effects of w are:

(1) Small (need D to 1% for w to 5%)
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DESI/Euclid — but not in growth rate redshift z

Solid: vary w Dashed: vary Q,



Scale of the Universe
Relative to Today’s Scale

but precision is challenging
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Vulnerability to data imperfections
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Vulnerability to nonlinear modelling
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e.g. Reid et al. (2014): central galaxy velocity offset matters in

RSD modelling at % level



Necessary astrophysical issues

* (Galaxy-halo connection
— bias and nonlinear clustering
— need mock data even with analytic theory

* Environmental effects
— ‘assembly bias’: halo galaxy contents not just N(M)

— gravitational lensing
» shear from tidal forces
» baryonic modification of mass distribution from feedback



Euclid Flagship Mock

2 trillion particles; 2 billion ‘galaxies’ from halo model Ny(M,0)




N(M+++)? Assembly bias

* Not just that haloes collapsing early are more clustered
— Always present in Kaiser (1984)
— Halo model averages over such effects:

b(M,z) + N(M): <bN> = <b> <N>

e But galaxy contents(M) can couple to formation z:
— Early formation yields older stars

— But deeper potential: harder to quench?
— Early formation gives fewer subhaloes (= satellites)

b(M,z)) + N(M,z;):<bN> # <b> <N>
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‘galactic conformity’ within haloes as

90:)_0"’“_“0_ sign of assembly bias (Weinmann et al.
" Rarde 2006). Also more controversial
Quenching empirically relates suggestions of conformity with
to environment (Peng et al. neighbouring haloes (Kauffmann 2012,

2010) 2015)



A challenge for theory
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EFT programme: supplement perturbation expansion with
general terms of correct symmetry. Even for matter, hard to
get beyond k = 0.2h Mpc-'.



Vulnerability to Priors

Will we believe any ‘detections’ of new physics?
P(model | data) ~ L(data | model) P(model)

— Moderate prior belief in simplest neutrino hierarchy
— Strong prior belief in unevolving A
— Even stronger prior belief in Einstein gravity

Already plenty of ‘detections’ that get ignored: e.g. Ain
1990s; Bean 2009 GR disproof; 2014 Beutler et al.
massive neutrino detection.



e.g. the lensing-CMB o tension
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A conservative solution (2010.00466)
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CMB lensing

KiDS 1000 + DES Y1 (£4/-)
Legacy Survey (This work)

All lensing

Planck 2018 (TTTEEE + lowE)

Total CMB lensing fits Planck:

0.96 1

Qm025 0-8 - 0589 i 0020 0.92 All lensing + Planck 2018 —
0.88 -
Local CMB lensingis also low: 0.84 1
& 0.80 -
Q0,078 g4 = 0.297 + 0.009
0.76 -

Lensing is consistent, and needs 0.72 -
lower density than Planck: 0,65 -

0.64 1

0,=0.274 = 0.024
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Q,

Formal combination with Planck just Q.= 0.296
consistent with both constraints at 95% 0g = 0.798




Implications for the H,tension

CMB most robustly measures Q. h® — from acoustic scale

— so lower density inevitably means higher h:

Q. =0.296: h=0.69
Q.=0274: h=0.71

— lower density from lensing removes H, tension (although
73 is still too high)



Issues with systematics

* Internal consistency
— Essential to pass null tests between data subsets

— If cosmic variance dominates, can rule out many data
systematics

— But if noise dominates, systematics at 10 level are undetectable
— cf. Planck resultsat £ <1000 vs £ > 1000

* External consistency
— Some consistency tests are weak (Bayesian Evidence Ratio)
— But consistency doesn’t prove no systematics (1803.04470):
» True posterior has non-Gaussian wings for ‘unknown unknowns’
« Nalive standard errors only work with many consistent experiments
« Important role for independenttechniques of moderate precision



Conclusions & outlook

Cosmology has had LCDM as a standard model for structure
formation for ~ 25 years

— Has survived huge improvements in data precision

— It may be the truth at the precision of even next-generation
experiments (only guaranteed signal is neutrino mass)

Searches for small deviations will remain important
— But improvements in astrophysical modelling are needed

Will we understand systematics well enough to believe detections of
deviations from LCDM?
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