
3rd Azores School on Observational Cosmology Bruno Leibundgut

Cosmology with Supernovae

Lecture 2

Bruno Leibundgut



3rd Azores School on Observational Cosmology Bruno Leibundgut

Programme

• Lecture 1

– Hubble Constant

• Importance of H0

• Measurements of H0

– local à distance ladder

– global à gravitational lensing, cosmic microwave 
background

• H0 today and tomorrow
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Programme

• Lecture 2

– Tests of General Relativity

• Expansion

– time dilation

• Distance duality

– relation between luminosity distance and angular size 
distance

– Cosmological parameters

• Evidence for acceleration

– Future of SN cosmology
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Time Dilation

In an expanding universe the time appears 
dilated for a distant object

– redshifts!

Find a clock ticking at a significant redshift

➔ light curve of a type Ia supernova
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Time Dilation in SNe Ia 

Uniform light curve shapes in a given filter

➔ Distant supernovae should show a 
‘slower’ light curve

more importance to brighter peak magnitudes and larger
uncertainties to the fainter parts of the light curve. This is the
reason for the higher x

2 of this fit and the much shallower
minimum in the x

2 distribution. This method also indicates a
solution for b 5 1.020.25

10.5 and also clearly excludes small values
of b.

In a static universe, time dilation is not expected to act on
the light curve. Redshift in this case is caused by tired light or
an equivalent theory (e.g., the variable mass hypothesis;
Narlikar & Arp 1993) and is linked to distance through
analyses such as the expanding photospheres in Type II
supernovae (Schmidt et al. 1994) and gravitational lenses (Dar
1991). Another manifestation is the redshift–apparent magni-
tude diagram of brightest cluster galaxies (see, e.g., Postman &
Lauer 1995) and SN Ia’s. The small scatter in the Hubble
diagram of Hamuy et al. (1995) supports this redshift-distance
relation. Table 2 lists the fit parameters for the nondilated
light-curve shapes. The global x

2 values clearly exclude these
fits. None of the known light curves of local SN Ia’s is slow
enough to match the photometry of SN 1995K (Fig. 2). In
particular, the maximum magnitude is far from the observed
one because of the attempt of the fits to match the premaxi-
mum point. The formal errors of the fit parameters are not
valid, as can be judged from large x

2 .
If we take a static universe literally, then SN 1995K was

observed at an earlier phase (16 days before maximum) than
any nearby supernova. In that case, we are depending on
extrapolated premaximum points in the template light curves,
which may not be correct. Therefore, we have removed the
premaximum point from the SN 1995K photometry and
compared it again with light curves of local SN Ia’s. The
quality of the fits improves dramatically (Fig. 2). The maxi-
mum date and magnitude agree much better with the obser-
vations. Slower light curves are clearly favored in this picture.
Nevertheless, even the slowest local templates are qualitatively
worse than dilated light curves; the evolution of SN 1995K was
considerably slower than any of the comparison curves.

3. DISCUSSION

Figure 2 shows the rest-frame B light curve of SN 1995K
compared to the best fits of light curves stretched by the
expected factor (1 1 z) for universal expansion and for non-
dilated templates. Two fits for the nondilated case are shown
that emphasize the importance of the premaximum observa-
tion. The figure demonstrates that without time dilation
effects, SN 1995K must be a unique event unrelated to the
observational data of local SN Ia’s. When we assume universal
expansion, SN 1995K appears as a rather normal SN Ia. The
spectrum shows great similarities to local events that are
regarded as nonpeculiar, the color at maximum (0.0 ,
B 2 V , 0.1) is similar to unreddened nearby SN Ia’s, indi-
cating little if any absorption, and the luminosity is in the range
expected from expanding cosmologies (Schmidt et al. 1996).
The light curve in itself indicates a redshift that is close to the
spectroscopic redshift. Complicating the analysis is the variety
of light-curve shapes observed for nearby SN Ia’s. This effect
has been interpreted as an apparent stretching of an underly-
ing basic template (Perlmutter et al. 1996). However, we know
from detailed analysis that the light-curve behavior is more
complicated (Riess et al. 1995a). The data of SN 1995K,
unfortunately, cannot distinguish which local supernova pro-
vides the best match. We find the formally best fits to indicate
a slightly lower redshift or, equivalently, a slightly retarded
cosmological expansion. All fits are determined very strongly
by the premaximum observation and the latest data points.
This highlights the importance for extended coverage of SN Ia
events to perform this time dilation test. In addition, the
photometric accuracy of the data critically determines the
goodness of the fits.

In a static universe, the Hubble constant is time indepen-
dent and just measures the redshift-distance proportionality.
For a conventional Hubble constant of H0 5 50 km s21 Mpc21 ,
one unit in redshift corresponds to 6000 Mpc. The same
number for H0 5 80 km s21 Mpc21 is 3750 Mpc. The luminos-
ity of SN 1995K in such a static universe is MB 5 219.3 1
5 log (H /50). Our best estimate for the absolute magnitude
that SN 1995K should have when we use the decline rate
relation of Hamuy et al. (1995), however, is MB 5 220.4 H
0.2 1 5 log (H /50), with Dm15 2 0.5 and the most conserva-
tive estimate of the decline-luminosity relation (eq. [11] of
Hamuy et al. 1995). This means SN 1995K should be about
1 mag more luminous than what would be observed in a static
universe model. Note that the extrapolation goes well beyond
the set of objects on which the method is based (0.8 , Dm15

, 1.5). Even compared to the average absolute magnitude
of local supernovae [MB 5 219.7 H 0.25 1 5 log (H /50)],
SN 1995K appears underluminous. In a static universe, SN

TABLE 2
FIT PARAMETERS FOR NONDILATED LIGHT CURVES ( z 5 0)

Comparison Template t max
B a

s(t max
B ) Bmax s(Bmax) Vmax s(Vmax) x

2 b

Average template . . . . . . . 799.1 0.5 22.27 0.06 22.54 0.05 137.7
SN 1990N. . . . . . . . . . . . . . . . 798.9 0.5 22.32 0.06 22.54 0.05 129.0
SN 1991T . . . . . . . . . . . . . . . . 799.4 0.6 22.38 0.06 22.58 0.05 90.1
SN 1992bc . . . . . . . . . . . . . . . 797.5 0.5 22.36 0.05 22.39 0.05 74.7

a JD 22,449,000.
b Degrees of freedom: 21.

FIG. 2.—Comparison of the SN 1995K photometry with B light curves of
local supernovae. The lines correspond to the best fits assuming a (1 1 z)
stretching as expected from universal expansion. The short-dashed lines
represent the best fit of nondilated light curves to the data, and the long-dashed
lines are the best fits excluding the premaximum observation of SN 1995K.

No. 1, 1996 SN 1995K L23

Leibundgut et al. 1996
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Time dilation

Spectroscopic clock in 
the distant universe

Observed Wavelength [Å]
Blondin et al. (2008)

(z ~ 0.5)

Dtobs [days]
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Time Dilation
‘Tired Light’ can be excluded beyond doubt (Δχ2=120)

Blondin et al. (2008)
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Luminosity Distances
– The rate of the photon arrivals is reduced by 

a factor 
! "#
! "$

= &
&'(

and the energy of the 

photons (𝐸 = ℎ𝜈) is also reduced by a factor 

(1 + 𝑧) (remember luminosity L is energy per 

time)

𝑙 =
𝐿

4𝜋𝑥&6𝑎6 𝑡9 1 + 𝑧 6

– Set 𝐷; = 𝑥&𝑎 𝑡9 1 + 𝑧 and we recover the 

equation for the luminosity distance 𝑙 = ;
<=>?

@



3rd Azores School on Observational Cosmology Bruno Leibundgut

Angular size distance

– A different method is to measure the angle 

of a distant object of known size 𝐷A =
B
C

(here 𝑙 is the size of the object; 𝜃 the observed angle)

– Inspection of the metric (here we only need 

the gθθ part), which gives 𝑙 = 𝑥&𝑎 𝑡& 𝜃
and inserting this in the equation above 

yields 𝐷A = 𝑥&𝑎 𝑡& and with 
! "#
! "$

= &
&'(

we find  
>?
>E
= 1 + 𝑧 6

.
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Distance Duality

This is quite remarkable for high redshifts

– the physical distances differ for the same 
redshift!

– an object for which we could measure the 
angular size distance and the 
luminosity distance would give 
a different number of Mpc!

– a direct consequence of 
general relativity

𝐷;
𝐷A

= 1 + 𝑧 6
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Distance Duality
• Now measured in several systems

– galaxy clusters

• Sunyaev-Zeldovich effect

• gravitational lenses

• Type II Supernovae

– use two different methods to the same object

– Expanding Photosphere Method

• equates luminosity distance with angular size 
distance

– Standardizable Candle Method

• pure luminosity distance
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Table 2. EPM quantities for SN 2013eq.

Date MJD Epoch⇤ Averaged v
✓†B ⇥ 1012 ✓†V ⇥ 1012 ✓†I ⇥ 1012 Dilution factor

rest frame km s�1 ⇣BVI reference

2013-08-15 56 519.96 +15.44 6835± 244 4.9± 1.8 4.8± 1.5 5.3± 1.2 0.41 H01
4.4± 1.6 4.2± 1.3 4.7± 1.1 0.53 D05

2013-08-25 56 529.96 +25.05 5722± 202 6.1± 1.5 6.1± 1.3 6.1± 0.9 0.43 H01
5.3± 1.3 5.3± 1.1 5.3± 0.8 0.59 D05

2013-10-06 56 571.90 +65.34 3600± 104 8.8± 1.5 10.5± 1.4 8.8± 0.8 0.75 H01
8.0± 1.4 9.5± 1.2 8.0± 0.7 0.92 D05

Notes.

(⇤) Rest frame epochs (assuming a redshift of 0.041) with respect to the first detection on 56 503.882 (MJD). H01: Hamuy et al. (2001);
D05: Dessart & Hillier (2005). See also Fig. 4.
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Fig. 4. Distance fit for SN 2013eq using ⇣BVI as given in Hamuy et al. (2001; left panel) and Dessart & Hillier (2005; right panel). The diamond
markers denote values of � through which the fit is made; circle markers depict the resulting epoch of explosion.

Table 3. EPM distance and explosion time for SN 2013eq.

Dilution Filter DL Averaged DL t?0 Average t?0 t30
factor Mpc Mpc days⇤ days⇤ MJD

H01
B 163± 45 5.8± 10.5
V 125± 22 151± 18 �0.5± 5.4 4.1± 4.4 56 499.6± 4.6
I 165± 23 7.1± 6.0

D05
B 177± 48 4.7± 9.8
V 136± 23 164± 20 �1.3± 5.1 3.1± 4.1 56 500.7± 4.3
I 180± 25 5.9± 5.6

Notes.

(⇤) Rest frame days before discovery on 56 503.882 (MJD). H01: Hamuy et al. (2001); D05: Dessart & Hillier (2005). See also Fig. 4.

determining the expansion velocity at 50 days, although the er-
ror in the Fe ii �5169 velocities and the intrinsic error in Eq. (12)
also contribute to the total error.

The uncertainty in the redshift plays an almost negligible
role. For completeness we did however propagate its error when
accounting for time dilation. Note that Hamuy & Pinto (2002)
find peculiar motions in nearby galaxies (cz < 3000 km s�1)
contribute significantly to the overall scatter in their Hubble dia-
gram; however this is not a relevant issue for SN 2013eq.

The final uncertainties in the distance modulus and the dis-
tance are propagated from the errors in MI50 , v50,Fe ii and (V�I)50.
The derived distance moduli and luminosity distances as well as
the intermediate results are given in Table 4.

4.5. Comparison of EPM and SCM distances

An inspection of Table 3 reveals that the two EPM luminosity
distances derived using the dilution factors from Hamuy et al.
(2001) and Dessart & Hillier (2005) give consistent values. This
is no surprise, bearing in mind that the dilution factors from
Hamuy & Pinto (2002) and Dessart & Hillier (2005) applied for
SN 2013eq di↵er by only 18–27% (see Table 2). Similarly, the
resulting explosion epochs are also consistent with each other.

Likewise, the SCM distances calculated utilizing the times
of explosion found via EPM and the dilution factors from either
Hamuy & Pinto (2002) or Dessart & Hillier (2005, see Table 4),
as well as by adopting the average SN II-P rise time as given
by Gall et al. (2015), are consistent not only with each other but
also with the EPM results.
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Table 4. SCM quantities and distance to SN 2013eq.

Estimate t30 V⇤50 I⇤50 v50 µ DL
of t0 via MJD mag mag km s�1 mag Mpc

EPM – H01 56 499.6± 4.6 19.05± 0.09 18.39± 0.04 4880± 760 36.03± 0.43 160± 32
EPM – D05 56 500.7± 4.3 19.06± 0.09 18.39± 0.04 4774± 741 35.98± 0.42 157± 31

Rise time – G15 56 496.6± 0.3 19.03± 0.05 18.39± 0.04 5150± 353 36.13± 0.20 168± 16

Notes.

(⇤) K-corrected magnitudes in the Johnson-Cousins Filter System. H01: Hamuy et al. (2001); D05: Dessart & Hillier (2005). See also Fig. 4.

It is remarkable how close our outcomes are within the er-
rors to the distance of 176 Mpc calculated from the redshift of
SN 2013eq with the simple formula D = cz/H0 (for H0 =
70 km s�1 Mpc�1). While this is of course no coincidence for the
SCM-distances (which are based on H0 = 70 km s�1 Mpc�1), the
EPM-distance is completely independent as to any assumptions
concerning the Hubble constant. This is particularly encourag-
ing, considering the scarcity of data points for our fits stemming
mostly from the di�culty of measuring the velocities of weak
iron lines in our spectra. It seems that both the SCM and the EPM
are surprisingly robust techniques to determine distances even at
non-negligible redshifts where high cadence observations are not
always viable.

5. Conclusions

We presented optical light curves and spectra of the Type II-P
SN 2013eq. It has a redshift of z = 0.041± 0.001 which inspired
us to embark on an analysis of relativistic e↵ects when apply-
ing the expanding photosphere method to SNe at non-negligible
redshifts.

We find that for the correct use of the EPM to SNe at non-
negligible redshifts, the observed flux needs to be converted into
the SN rest frame, e.g. by applying a K-correction. In addition,
the angular size, ✓, has to be corrected by a factor of (1+ z)2 and
the resulting EPM distance will be an angular distance. However,
when using a modified version of the angular size ✓† = ✓/(1 +
z)2 the EPM can be applied in the same way as has previously
been done for small redshifts, with the only modification being a
K-correction of the observed flux. The fundamental di↵erence is
that this will result in a luminosity distance instead of an angular
distance.

For the SCM we follow the approach of Nugent et al. (2006),
who outline its use for SNe at cosmologically significant red-
shifts. Similar to the EPM their formulation of the high red-
shift SCM requires the observed magnitudes to be transformed
into the SN rest frame, which in practice corresponds to a
K-correction.

We find EPM luminosity distances of DL = 151± 18 Mpc
and DL = 164± 20 Mpc as well as times of explosions of
4.1± 4.4 d and 3.1± 4.1 d before discovery (rest frame), by using
the dilution factors in Hamuy et al. (2001) and Dessart & Hillier
(2005), respectively. Assuming that SN 2013eq was discov-
ered close to maximum light this would result in rise times
that are in line with those of local SNe II-P (Gall et al. 2015).
With the times of explosions derived via the EPM – having
used the dilution factors from either Hamuy et al. (2001) or
Dessart & Hillier (2005) – we find SCM luminosity distances
of DL = 160± 32 Mpc and DL = 157± 31 Mpc. By utilizing the
average rise time of SNe II-P as presented in Gall et al. (2015)
to estimate the epoch of explosion we find an independent SCM
distance of DL = 168± 16 Mpc.

The luminosity distances derived using di↵erent dilution
factors as well as either EPM or SCM are consistent with
each other. Considering the scarcity of viable velocity mea-
surements it is encouraging that our results lie relatively
close to the expected distance of ⇠176 Mpc calculated from
the redshift of SN 2013eq. Conversely, the EPM distances
can be used to calculate the Hubble constant, which (us-
ing D = cz/H0) results in H0 = 83± 10 km s�1 Mpc�1 and
H0 = 76± 9 km s�1 Mpc�1 applying the dilution factors from
Hamuy et al. (2001) and Dessart & Hillier (2005), respectively.
These are consistent with the latest results from Riess et al.
(2016, H0 = 73.0± 1.8 km s�1 Mpc�1).

With current and upcoming transient surveys, it appears to
be only a matter of time until statistically significant numbers
of SNe II-P become available also at non-negligible redshifts.
Consequently, the promise of yielding sound results will turn the
EPM and SCM into increasingly important cosmological tools,
provided that the requisite follow-up capabilities are in place.
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Distance to SN 2013eq
(z=0.041)

• Use EPM and CSM to measure 

• distance to same supernova

• EPM provides explosion date to be used 
by CSM Gall et al. 2016
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Distance Duality

First attempts inconclusive A&A proofs: manuscript no. EPMSample_paper
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Fig. 6: Comparison of EPM and SCM distances, using the di-
lution factors by Dessart & Hillier (2005). Filled circles denote
SNe for which an estimate of the explosion epoch was obtained
via EPM, while the filled stars are for SNe where the explosion
epoch was estimated from the photometry. The labelled SNe are
the three Type II-L SNe. Different colours denote the line that
was used to estimate the photospheric velocities: red corresponds
to Fe ii λ5169, and dark blue to Hβ. DSCM

L = DEPM
θ × (1 + z)2

is shown as a solid line, for a ΛCDM cosmology with H0 =
70± 5 km s−1 Mpc−1, Ωm = 0.3 and ΩΛ = 0.7.

in the explosion epoch directly translates into an uncertainty in
the 50 d velocity and thereby affects the precision of the distance
measurement. In our sample this is borne out in the fact that the
SCM distances derived using estimates for the explosion epoch
from photometry, have significantly smaller relative uncertain-
ties, than those derived using estimates via the EPM.

3.7. Comparison of EPM and SCM distances

Fig. 6 shows the comparison between the EPM and SCM dis-
tances for the entire sample. Although there is some scatter, it
is reassuring to find overall consistency. Furthermore, there is
no obvious trend for one technique to systematically result in
longer or shorter distances than the other; a shift would indicate
an H0 ! 70 km s−1 Mpc−1. Similarly, there appears to be no ob-
vious systematic shift amongst the SNe (in red) for which the
EPM and SCM distances were derived using the Fe ii λ5169 line
as an estimator for the photospheric velocity.

3.8. The Hubble diagram

Figure 7 shows the Hubble diagrams using EPM and SCM dis-
tances, respectively. The red and blue points represent SNe from
our sample for which either Fe ii λ5169 or Hβ was used to es-
timate the photospheric velocities. For reasons of better visi-
bility we only depict our distance results using the Dessart &
Hillier (2005) dilution factors, which give somewhat larger dis-
tances than the Hamuy et al. (2001) dilution factors. Our conclu-
sions are the same regardless of which set of dilution factors is
used. The grey points depict SNe from other samples. The solid
line in both panels represents a ΛCDM cosmology with H0 =

70 km s−1 Mpc−1, Ωm = 0.3 and ΩΛ = 0.7.8 We do not aim to
perform a fit for H0. The three Type II-L SNe LSQ13cuw, PS1-
14vk and PS1-13bmf are labeled in both the EPM and the SCM
Hubble diagram.

3.8.1. EPM Hubble diagram

In addition to the EPM measurements from our own sample we
also included EPM distances from the samples of Eastman et al.
(1996, Table 6), Jones et al. (2009, Table 5) and Bose & Kumar
(2014, Table 3) in the EPM Hubble diagram (see left panel of
Figure 7). These values were adopted as they are, without any
correction for potential systematic differences. In the cases of
Jones et al. (2009) and Bose & Kumar (2014) we selected the
distances given using the Dessart & Hillier (2005) dilution fac-
tors. In addition, Bose & Kumar (2014) give alternate results for
the SNe 2004et, 2005cs, and 2012aw, for which constraints for
the explosion epoch are available. We chose these values rather
than the less constrained distance measurements in these three
cases. Note that the Jones et al. (2009) sample has SN 1992ba in
common with the Eastman et al. (1996) sample and SN 1999gi
in common with the Bose & Kumar (2014) sample.

Exploring the EPM Hubble diagram, it is immediately appar-
ent that our measured distances follow the slope of the Hubble
line, despite the rather poor quality of the data available for some
of our SNe.

3.8.2. SCM Hubble diagram

The SCM Hubble diagram shows the SCM distances derived
for our sample alongside SCM measurements from the sam-
ples of Poznanski et al. (2009, Table 2), Olivares et al. (2010,
Table 8) and D’Andrea et al. (2010, Table 3). The Poznanski
et al. (2009) sample contains all objects from the Nugent et al.
(2006) sample. We also included those objects that Poznanski
et al. (2009) “culled” due to their higher decline rates. These
are distinguished by a different symbol in the right panel of
Figure 7. We applied no corrections for systematic differences
or different parameters used in the various samples. D’Andrea
et al. (2010) do not give the distance measurements directly but
rather their derived values for the I-band magnitude, the (V − I)-
colour and the velocity 50 days after explosion (rest frame). We
used these to apply the same equation and parameters from Nu-
gent et al. (2006) as for our own sample, to find the distances
to these objects. Note that the Poznanski et al. (2009) and Oli-
vares et al. (2010) samples have a number of SNe in common:
SNe 1991al, 1992af, 1992ba, 1999br, 1999cr, 1999em, 1999gi,
2003hl, 2003iq, and 2004et.

Our SCM distances scatter around the H0 = 70 km s−1 Mpc−1

line, which of course is no surprise considering that the SCM
is based on a previously chosen value of H0 (in our case H0 =
70 km s−1 Mpc−1 following Nugent et al. 2006).

Interestingly, there seems to be no obvious difference regard-
ing scatter between those SNe for which an estimate of the ex-
plosion epoch was available through the SN photometry or those
that rely on an EPM estimate for the time of explosion. This im-
plies either that the epochs of explosion derived via the EPM are
relatively accurate, or that constraints on the explosion epoch of
only a few days, are not relevant for precise SCM measurements.

8 The choice of H0 = 70 km s−1 Mpc−1 is rather arbitrary and adopted
mainly for consistency with the SCM parameters suggested by Nugent
et al. (2006). The general principles and our conclusions are the same,
notwithstanding the exact choice of H0.
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Cosmological Parameters

Map the expansion history of the universe

– Type Ia supernovae provide the accurate 
relative distances 

– Measurement independent of H0

• assumes no luminosity evolution of SNe Ia over 
time

Completely within the framework of FRW 
models
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The Energy-Momentum Tensor

• Use the form for the ‘perfect fluid’

The energy conservation requires that 
the covariant derivative

T µν =

ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

!

"

#
#
#
##

$

%

&
&
&
&&

0 = T µν
;µ =

∂T 0µ

∂xµ
+Γ0µνT

νµ +Γµ
µνT

0ν =
∂T 00

∂t
+Γ0ij +Γ

i
i0T

00 =
c2dρ
dt

+3 !a
a
(p+ ρc2 )

c2 !ρ +3 !a
a
(p+ ρc2 ) = 0
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Energy-Momentum Tensor

• A general form is an equation of state 
𝑝 = 𝜔𝜌𝑐6. 𝜔 is the equation of state 
parameter.

• Inserting this into the conservation 

equation gives 
J̇
J
= −3(1 + 𝜔) !̇

!
which integrates to
log 𝜌 = −3 1 + 𝜔 log 𝑎 + 𝑐𝑜𝑛𝑠𝑡.

• Exponentiating yields 𝜌 ∝ 𝑎VW &'X
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Energy-Momentum Tensor

• The time (00) component of the Einstein 
equations is 

𝑎̈
𝑎 = −

4𝜋𝐺
3𝑐6 (𝜌𝑐

6 + 3𝑝)

• As long as pressure and density are 
positive the universe decelerates 𝑎̈ < 0.

• Acceleration requires 𝜌𝑐6 + 3𝑝 < 0 or 

𝜔 < −&
W
.   
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Matter

• The pressure in matter is negligible 
compared to the mass content 
(think 𝑚𝑐6) and hence 𝜔 = 0

• Thus 𝜌^!""_` ∝ 𝑎VW

• Inserting this in the Friedmann equation 
for a flat universe (k=0) provides the time 
dependence of the scale factor

𝑎 𝑡 ∝ 𝑡
6
W
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Radiation

• Radiation decreases with the volume (i.e. 
number of photons), but has one 

additional factor due to the redshift 𝜔 = &
W

and hence 𝜌`!a ∝ 𝑎V<

• The time dependence here is now 

𝑎 𝑡 ∝ 𝑡�
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Vacuum energy

• A special case is 𝜌c!dee^ = 𝑐𝑜𝑛𝑠𝑡.
• In this case the density is associated to 

the vacuum

• Now the scale factor grows exponentially

𝑎 𝑡 ∝ 𝑒g"
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Friedmann equation (last time)
• We can put the various densities into the 

Friedmann equation
𝑎̇6

𝑎6 = 𝐻6 =
8𝜋𝐺
3 𝜌 𝑡 =

8𝜋𝐺
3 𝜌^!""_` + 𝜌`!a + 𝜌c!d −

𝑘
𝑎6

• We can define the critical density for a flat 

universe (𝑘 = 0) 𝜌d`k" =
Wg@

<=l
we can define the 

ratio to the critical density Ω = J
Jnopq

• Most compact form of Friedmann equation 

1 = Ω^!""_` + Ω`!a + Ωc!d + Ωr	with Ωr = − r
!@g@
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Dependence on scale parameter 

For the different contents there were different 
dependencies for the scale parameter

𝜌^!""_` ∝ 𝑎VW; 𝜌`!a ∝ 𝑎V<; 𝜌u = 𝑐𝑜𝑛𝑠𝑡.
Combining this with the critical densities we 
can write the density as

𝜌 =
3𝐻96

8𝜋𝐺 Ω^!""_`
𝑎9
𝑎

W
+ Ω`!a

𝑎9
𝑎

<
+ Ωu

and the Friedmann equation
𝐻6 = 𝐻96 Ω^!""_` 1 + 𝑧 W + Ω`!a 1 + 𝑧 < + Ωu + Ωr 1 + 𝑧 6
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Lookback Time
• Consider

𝐻 =
𝑎̇
𝑎 =

𝑑𝑎
𝑑𝑡
1
𝑎 = 𝑑𝑡 ln

𝑎 𝑡
𝑎9

=
1
𝑑𝑡 ln

1
1 + 𝑧 = −

1
1 + 𝑧

𝑑𝑧
𝑑𝑡

• Inserting into the Friedmann equation we 
find the equation for the time interval

𝑑𝑡 =
−𝑑𝑧

𝐻9 1 + 𝑧 Ω^!""_` 1 + 𝑧 W + Ω`!a 1 + 𝑧 < + Ωu + Ωr 1 + 𝑧 6� 		

and integrating

𝑡9 − 𝑡& =
1
𝐻9
x

𝑑𝑧
1 + 𝑧 Ω^!""_` 1 + 𝑧 W + Ω`!a 1 + 𝑧 < + Ωu + Ωr 1 + 𝑧 6�

(#

9

• Age in a matter dominated universe 

𝑡1 = 0, 𝑧 = ∞ 	𝑡9,^!""_` =
&
g$
∫ a(

&'(
|
@
= 6

Wg$

}
9
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Distances (last time)
We can now also express the luminosity 

distance 𝐷; = 𝑎9𝑥& 1 + 𝑧 in these terms

– from the metric for a light ray coming towards 

us we have 
a`
da"

= &Vr~@�

! "
which turns into 

�$
�

a~
&Vr~@� = 1 + 𝑧 𝑑𝑡		

– after integration we have (using 𝑑𝑡 from above) 
!$
d ∫

a~
&Vr~@� =~#

9 ∫ a(
g$ ���qq�o &'( �'�o�� &'( �'��'�� &'( @� 		

(#
9

– solutions of the left side are !$
d
×

������ ~# r�

r�
																		𝑘 > 0

𝑥&																																			𝑘 = 0
������� ~# Vr�

Vr� 													𝑘 < 0
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Luminosity Distance

Putting this together with the appropriate 

trigonometric functions gives

D; = 𝑎9𝑥& 1 + 𝑧 = d &'(
g$ ��

� 𝑆 Ωr
� ∫ a(�

���qq�o &'(� �'�o�� &'(� �'��'�� &'(� @� 		
(
9

with 𝑆 𝑦 = �
sin 𝑦 								𝑘 > 0
𝑦																		𝑘 = 0
sinh 𝑦 					𝑘 < 0

We now have the luminosity distance as a 
function of today’s measurements (𝐻0, Ω’𝑠)
and the redshift 𝑧
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With the equation of state parameter w

General luminosity distance

𝐷; =
1 + 𝑧 𝑐
𝐻9 ��

�
𝑆 Ωr

� x Ωr 1 + 𝑧� 6 +�Ωk 1 + 𝑧� W &'Xp

�

k

V&6(

9

𝑑𝑧′

– with Ωr = 1 − ∑ Ωk	�
k and 𝜔k =

�p
Jpd@

• w� = 	0	(matter) 

• w  = 	⅓	(radiation) 

• wL =	−1	(cosmological constant)
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SN Ia Hubble diagram

• Excellent distance indicators

• Experimentally verified

• Work of several decades

• Best determination of 
the Hubble constant

Reindl et al. 2005
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Distance indicator!
Distance

Expansion velocity
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The SN Hubble 
Diagram
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If the observational evidence upon 
which these claims are based are 
reinforced by future experiments, the 
implications for cosmology will be 
incredible.

Preprint August 1999
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Nobel Prize in Physics 2011

"for the discovery of the accelerating 
expansion of the Universe through 

observations of distant supernovae"

Saul Perlmutter Brian Schmidt Adam Riess
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What does this mean?

Distant supernovae are further away than in 
a freely expanding, emtpy universe

This requires a repulsive component
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Contents of the universe

Dark Matter and Dark Energy are the 
dominant energy components in the 
universe.
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Supernova Cosmology

560 SNe Ia

Goobar & Leibundgut 2011
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Goobar & Leibundgut 2011

et voilà ...

10 years of progress
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Constant ω firmly established
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Status 2014
M. Betoule et al.: Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples.

redshift
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Fig. 7. Values of �coh determined for seven sub-samples of the
Hubble residuals: low-z z < 0.03 and z > 0.03, SDSS z < 0.2
and z > 0.2, SNLS z < 0.5 and z > 0.5, and HST.

6. ⇤CDM constraints from SNe Ia alone

The SN Ia sample presented in this paper covers the redshift
range 0.01 < z < 1.2. This lever-arm is su�cient to provide
a stringent constraint on a single parameter driving the evolu-
tion of the expansion rate. In particular, in a flat universe with
a cosmological constant (hereafter ⇤CDM), SNe Ia alone pro-
vide an accurate measurement of the reduced matter density
⌦m. However, SNe alone can only measure ratios of distances,
which are independent of the value of the Hubble constant today
(H0 = 100h km s�1 Mpc�1). In this section we discuss ⇤CDM
parameter constraints from SNe Ia alone. We also detail the rel-
ative influence of each incremental change relative to the C11
analysis.

6.1. ⇤CDM fit of the Hubble diagram

Using the distance estimator given in Eq. (4), we fit a ⇤CDM
cosmology to supernovae measurements by minimizing the fol-
lowing function:

�2 = (µ̂ � µ⇤CDM(z;⌦m))†C�1(µ̂ � µ⇤CDM(z;⌦m)) (15)

with C the covariance matrix of µ̂ described in Sect. 5.5 and
µ⇤CDM(z;⌦m) = 5 log10(dL(z;⌦m)/10pc) computed for a fixed
fiducial value of H0 = 70 km s�1 Mpc�1,12 assuming an unper-
turbed Friedmann-Lemaître-Robertson-Walker geometry, which
is an acceptable approximation (Ben-Dayan et al. 2013). The
free parameters in the fit are ⌦m and the 4 nuisance parameters
↵, �, M1

B and �M from Eq. (4). The Hubble diagram for the JLA
sample and the ⇤CDM fit are shown in Fig. 8. We find a best fit
value for ⌦m of 0.295 ± 0.034. The fit parameters are given in
the first row of Table 10.

For consistency checks, we fit our full sample excluding sys-
tematic uncertainties and we fit subsamples labeled according to
the data included: SDSS+SNLS, lowz+SDSS and lowz+SNLS.
Confidence contours for ⌦m and the nuisance parameters ↵, �
and �M are given in Fig. 9 for the JLA and the lowz+SNLS
sample fits. The correlation between ⌦m and any of the nuisance
parameters is less than 10% for the JLA sample.

12 This value is assumed purely for convenience and using another
value would not a↵ect the cosmological fit (beyond changing accord-
ingly the recovered value of M1

B).
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Fig. 8. Top: Hubble diagram of the combined sample. The dis-
tance modulus redshift relation of the best-fit ⇤CDM cosmol-
ogy for a fixed H0 = 70 km s�1 Mpc�1 is shown as the black
line. Bottom: Residuals from the best-fit ⇤CDM cosmology as
a function of redshift. The weighted average of the residuals in
logarithmic redshift bins of width �z/z ⇠ 0.24 are shown as
black dots.

Fig. 9. 68% and 95% confidence contours for the ⇤CDM fit pa-
rameters. Filled gray contours result from the fit of the full JLA
sample; red dashed contours from the fit of a subsample exclud-
ing SDSS-II data (lowz+SNLS).

The ⇤CDM model is already well constrained by the SNLS
and low-z data thanks to their large redshift lever-arm. However,
the addition of the numerous and well-calibrated SDSS-II data
to the C11 sample is interesting in several respects. Most impor-
tantly, cross-calibrated accurately with the SNLS, the SDSS-II
data provide an alternative low-z anchor to the Hubble diagram,
with better understood systematic uncertainties. This redundant
anchor adds some weight in the global ⇤CDM fit, thanks to high
statistics, and helps in the determination of ⌦m with a 25% re-
duction in the total uncertainty.

The complete redshift coverage makes it possible to assess
the overall consistency of the SN data with the ⇤CDM model.
Residuals from the ⇤CDM fit can be seen for the entire redshift
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Fig. 14. 68% and 95% confidence contours (including system-
atic uncertainty) for the⌦m and⌦⇤ cosmological parameters for
the o-⇤CDM model. Labels for the various data sets correspond
to the present SN Ia compilation (JLA), the Conley et al. (2011)
SN Ia compilation (C11), the combination of Planck tempera-
ture and WMAP polarization measurements of the CMB fluctu-
ation (PLANCK+WP), and a combination of measurements of
the BAO scale (BAO). See Sect. 7.1 for details. The black dashed
line corresponds to a flat universe.

7.2. Constraints on cosmological parameters for various dark
energy models

We consider three alternatives to the base ⇤CDM model:

– the one-parameter extension allowing for non-zero spatial
curvature ⌦k, labeled o-⇤CDM.

– the one-parameter extension allowing for dark energy in a
spatially flat universe with an arbitrary constant equation of
state parameter w, labeled w-CDM.

– the two-parameter extension allowing for dark energy in a
spatially flat universe with a time varying equation of state
parameter parameterized as w(a) = w0 + wa(1 � a) with a =
1/(1 + z) (Linder 2003) and labeled wz-CDM.

We follow the assumptions of Planck Collaboration XVI (2013)
to achieve consistency with our prior. In particular we assume
massive neutrinos can be approximated as a single massive
eigenstate with m⌫ = 0.06 eV and an e↵ective energy density
when relativistic:

⇢⌫ = Ne↵
7
8

 
4

11

!4/3

⇢� (26)

with ⇢� the radiation energy density and Ne↵ = 3.046. We use
Tcmb = 2.7255 K for the CMB temperature today.

Best-fit parameters for di↵erent probe combinations are
given in Tables 14, 15 and 16. Errors quoted in the ta-
bles are 1-� Cramér-Rao lower bounds from the approximate
Fisher Information Matrix. Confidence contours corresponding
to ��2 = 2.28 (68%) and ��2 = 6 (95%) are shown in
Figs. 14, 15 and 16. For all studies involving SNe Ia, we used
likelihood functions similar to Eq. (15), with both statistical and
systematic uncertainties included in the computation of C. We
also performed fits involving the SNLS+SDSS subsample and
the C11 “SALT2” sample for comparison (see Sect. 6).

In all cases the combination of our supernova sample with
the two other probes is compatible with the cosmological con-
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Fig. 15. Confidence contours at 68% and 95% (including sys-
tematic uncertainty) for the ⌦m and w cosmological parameters
for the flat w-⇤CDM model. The black dashed line corresponds
to the cosmological constant hypothesis.

Fig. 16. Confidence contours at 68% and 95% (including sys-
tematic uncertainty) for the w and wa cosmological parameters
for the flat w-⇤CDM model.

stant solution in a flat universe, which could have been antic-
ipated from the agreement between CMB and SN Ia measure-
ments of ⇤CDM parameters (see Sect. 6.6). This concordance is
the main result of the present paper. We note that this conclusion
still holds if we use the WMAP CMB temperature measurement
in place of the Planck measurement (see Table 15).

For the w-CDM model, in combination with Planck, we
measure w =�1.018 ± 0.057. This represents a substan-
tial improvement in uncertainty (30%) over the combination
PLANCK+WP+C11 (w = �1.093±0.078 ). The ⇠ 1� (stat+sys)
change in w is caused primarily by the recalibration of the SNLS
sample as discussed in detail in Sect. 6. The improvement in er-
rors is due to the inclusion of the full SDSS-II spectroscopic
sample and to the reduction in systematic errors due to the joint
re-calibration of the SDSS-II and SNLS surveys. As an illustra-
tion of the relative influence of those two changes, using the C11
calibration uncertainties would increase the uncertainty of w to
6.5%.

Interestingly, the CMB+SNLS+SDSS combination delivers
a competitive measurement of w with an accuracy of 6.9%, de-

21
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Systematic uncertainties
Current questions

– calibration

– reddening and absorption
• detection 

– through colours or spectroscopic indicators

• correction
– knowledge of absorption law

– light curve fitting

– selection bias
• sampling of different populations

– gravitational lensing

– brightness evolution
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Where are we …

ESSENCE
CFHT Legacy Survey
Dark Energy Survey

Higher-z SN Search
(GOODS, SH0ES)

SN Factory
Carnegie SN Project
SDSSII
Pan-STARRS1

Euclid/WFIRST/LSST

Plus the local searches:
LOTOSS, CfA, ESC, PTF
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What next?
Already in hand

– >1000 SNe Ia for cosmology
– constant ω determined to 5%
– accuracy dominated by systematic effects

Missing
– good data at z>1

• light curves and spectra

– good infrared data at z>0.5
• cover the restframe B and V filters
• move towards longer wavelengths to reduce 

absorption effects
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Goobar & Leibundgut 2011
(courtesy E. Linder and J. Johansson)

Cosmology – more?
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Speculations

Einstein’s cosmologal constant
No explanation in particle physics theories

Quintessence
Quantum mechanical particle field releasing energy into 
the universe 

Signatures of high dimensions
Gravity is best described in theories with more than four 
dimensions

Phantom Energy
Dark Energy dominates and eventually the universe end 
in a (Big Rip)

Rµν −
1
2
gµνR−Λgµν =

8πG
c4

Tµν
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Supernova Cosmology –
do we need more?

Test for variable ω
– required accuracy ~2% in individual distances
– can SNe Ia provide this?

• can the systematics be reduced to this level?
• homogeneous photometry?
• further parameters (e.g. host galaxy metalicity)
• handle >100000 SNe Ia per year?

Euclid
– SNe Ia with IR light curves (deep fields) 
à restframe I (z<1.2), J (z<0.8) and H (z<0.4) 

– several thousand SNe to be discovered


