Testing the stability of fundamental couplings with ESPRESSO

Ana Catarina Leite

In Colaboration with:

- Carlos Martins IA-Porto
- Paolo Molaro INAF-OATS

Testing Fine Structure Constant in the Sky

Image: Michael Murphy, Swinburne University of Technology, Melbourne, Australia

How to Measure α ?

Echelle SPectrograph for Rocky Exoplanet- and Stable Spectroscopic Observations

		Parameter/Mode	singleHR (1 UT)	multiMR (up to 4 UTs)	singleUHR (1 UT)
/osnraese		Wavelength range	380–780 nm	380–780 nm	380–780 nm
		Resolving power	134 000	59 000	225 000
		Aperture on sky	1.0 arcsec	4×1.0 arcsec	0.5 arcsec
		Spectral sampling (average)	4.5 pixels	5.5 pixels (binned \times 2)	2.5 pixels
		Spatial sampling per slice	9.0 (4.5) pixels	5.5 pixels (binned \times 4)	5.0 pixels
	A A A A A A A A A A A A A A A A A A A	Simultaneous reference	Yes (no sky)	Yes (no sky)	Yes (no sky)
		Sky subtraction	Yes (no simul. ref.)	Yes (no simul. ref.)	Yes (no simul. ref.)
Hard Aller		Total efficiency	11 %	11 %	5%
		Instrumental RV precision	< 10 cm s ⁻¹	~ 1 m s ⁻¹	< 10 cm s ⁻¹
				Papa at al 2012 Th	Mansangaris 6
	Blue cross-disperser Blue transfer collimator Red transfe	r collimator	Red CCD Camera d camera 8(control of the second secon	High resolution ar (Laser Frequenc D% Rocky Planets, Constants, 10% to l ToO + Exquisite	nd stability y Comb) 10% Varying be decided: Science
espresso	Field lens	Fi Dichroic min R4 eche	eld mirror ror Ile grating	~27 nights to variation of co	o test nstants

GTO Target List and ESPRESSO's Modes

GTO – Garanteed Time of Observation

Name	z_{abs}	М	$\frac{\Delta \alpha}{\alpha} (10^{-6})$	$\sigma_{\frac{\Delta\alpha}{\alpha}}(10^{-6})$	μ	Т
J034943-381031	3.02	17.3	-27.9	34.2	x	x
J040718-441013	2.59	17.3	5.7	3.4*	x'	
J043037-485523	1.35	16.5	-4.0	2.3*		
J053007-250329	2.14	18.8	6.7	3.5*	X'	
J110325-264515	1.84	15.9	6.1	3.9*		
J110325-264515	1.84	15.9	5.6	2.6		
J115944+011206	1.94	17.5	5.1	4.4*		
J133335+164903	1.77	16.7	8.4	4.4		
HE1347-2457	1.43	16.3	-21.3	3.6		
J220852-194359	1.92	17.0	8.5	3.8		
HE2217-2818	1.69	16.0	1.3	2.4		
Q2230+0232	1.86	18.0	-9.9	4.9		
J233446-090812	2.15	18.0	5.2	4.3*		
J233446-090812	2.28	18.0	7.5	3.7*		
Q2343+1232	2.43	17.5	-12.2	3.8*		

Leite et. al. 2016, Phys. Rev. D 94, 123512

 $\sigma_{\Delta \alpha / \alpha} = 0.6 \times 10^{-6}$ (per target)

1 Hour Exposure Limiting **M= 17.4**

Constrains on Cosmological Models

Dinamic Dark Energy

The scalar field that responsible for dark energy leads to a varying α

$$\frac{\Delta \alpha}{\alpha}(z) = \zeta \int_0^z \sqrt{3\Omega_{\phi}(z') \left[1 + w_{\phi}(z')\right]} \frac{dz'}{1 + z'}$$

 $\zeta_{\rm fid} = 0$

Model	ESPRESSO baseline	ESPRESSO ideal	ELT-HIRES
$w_0 = const.$	4.6×10^{-7}	1.5×10^{-7}	7.6×10^{-8}
Dilaton	3.2×10^{-7}	1.1×10^{-7}	5.3×10^{-8}
CPL	3.1×10^{-7}	1.0×10^{-7}	5.1×10^{-8}
η	2.1×10^{-16}	2.3×10^{-17}	5.8×10^{-18}

ESP. Baseline ESP. Ideal ELT-HIRES $\sigma_{\Delta lpha / lpha} = 0.6 \times 10^{-6}$ $\sigma_{\Delta lpha / lpha} = 0.2 \times 10^{-6}$ $\sigma_{\Delta lpha / lpha} = 1.0 \times 10^{-7}$

Phy. Lett. B, 770, 93: C. S. Alves, T. A. Silva, C. J. A. P. Martins, A. C. O. Leite, 2017

Conclusion

- ESPRESSO is comming soon enabling higher resolution and stability observations
- It will be able to control the known systematics identified on these measurements Probe or disprove the Dipole
- The target list for ESPRESSO GTO can constrain cosmological models
- Competitive constrains on Eötvös parameter

Thank you for your attention