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Are curvature singularities so bad?

some counterexamples

Diego Rubiera-Garcia

Institute of Astrophysics and Space Sciences (IA)
Lisbon University (Portugal)

Based on arXiv: 1504.07015 (EPJC), 1507.07763 (PRD),
1508.03272 (PRD), 1511.03755 (PRD), and 1602.01798 (CQG)

IberiCos 2016, Vila do Conde, March 30th, 2016
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Space-time singularities in GR . .
F 9 Singularity theorems

Curvature di 2N

Singularity theorems

» The theorems on singularities (Hawking, Penrose) tell us that space-time singularities are
unavoidable in the context of GR.

» Fundamentally different from singularities on the fields living on a fixed space-time
background! (e.g. Coulomb’s divergence).

» If space-time breaks down when a singularity, how can we even speak of a singularity as
something occurring at some “location”?.

» Itis hard to rigorously capture the intuitive notion of a singularity (the theorems on
singularities offer little clue about this).

Diego Rubiera-Garcia Institute of Astrophysics and Space Sciences'  Are curvature singularities so bad? some counterexamples



Space-time singularities in GR _ .
Singularity theorems

Curvature divergences vs geodesic completeness

Curvature divergences vs geodesic completeness

» If we see space-time singularities as indicative of a physically troublesome region, a
natural guess is that something is going on ill with the geometry.

> The blow up of curvature scalars (curvature divergences) tell us that we have a
space-time singularity.

> Then if you want non-singular space-time time, just make all the curvature
invariants finite.

» A standard strategy is to propose a line element with known finite curvature scalars and
drive the Einstein’s equations back to find the action it derives from (through removal of
any of the hypothesis): from Bardeen solution to a huge literature on the subject (Review:
0802.0330 [gr-gc]). But...

» Nothing in the singularity theorems speak of curvature invariants!.
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Space-time singularities in GR ~ o
Singularity theorems

Curvature divergences vs geodesic completeness

» A more powerful characterization of space-times containing singularities is provided by
the notion of geodesic completeness (Geroch, Penrose, Hawking,...).

» Geodesics describing null rays or time-like (physical) observers should be complete: in a
consistent theory nothing can cease to exist suddenly or “emerge” from nowhere.

missing points?
particle
"fear inspacetime”

from where?

where does
she go?

incomplete
curve

observer

» That observers may experience intense tidal forces or large deformations is secondary as
long as they exist.
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Space-time singularities in GR

Singularity theorems
Curvature divergences vs geodesic completeness

» Thus:

> In a singular space-time there exist geodesic curves which cannot be extended to
arbitrarily large values of the affine parameter (i.e., they start or terminate at some
finite value).

> In a non-singular space-time geodesics can be extended to arbitrarily large values
of the affine parameter (geodesic completeness), no matter the behaviour of the
curvature invariants.

» The widespread identification between curvature divergences and space-time
singularities comes from the fact that in many cases of interest, those space-times
showing curvature divergences are also geodesically incomplete.

» Assumptions/approach of our research:

» Fundamental criterium for space-time singularities is geodesic completeness.

> Space-time singularities are an artifact of the classical GR description, which
would break down at high curvature/short-scales: modified gravity.

> The bulk of “quantum gravity” effects can be captured by some effective theory of
gravity in which singularities are avoided.

Diego Rubiera-Garcia Institute of Astrophysics and Space Sciences'  Are curvature singularities so bad? some counterexamples



Background geometry

A geodesically complete space-time The and approach
Geode

Background geometry

» Consider the following electrovacuum geometry (derived first in 1207.6004 [gr-qc] (PRD))

2
ds? = —A(x)dv? + ——dvdx +r?(x)dQ?
O+
where
1 rs (14 0:G(r)) 1/ rd
(x) o4 r o2 T g Ve O r4(x)’
1 1
G(z) = 5 + 5V z4 -1 [f3/4(z)+f7/4(z)]
'C

where re =  /lerg: “core” radius, l¢ some length scale, rq2 = 2Gp q2: charge radius,
rs = 2Mp: Schwarzschild radius, &; ~ —0.572 a constant.

» Forz =r/rc > 1 — Reissner-Nordstrom space-time:

A(x)~1——+2r2+ < >

> Forz ~ 1 (Ng: number of charges):
Ng (& N¢c —N
A(X) ~ _d ( 1 ) c q
4N, 8,0 Vr—rc 2N,

Are curvature singularities so bad? some counterexamples
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Background geometry
A geodesically complete space-time Theories and approach

Geodesics

2 )
> From (4)° = 2—2; we find

» Curvature scalars at the wormhole throat can be all finite (6; = ) or divergent (8; 7 O),
but WH structure persists in all spectrum of mass and charge.

Diego Rubiera-Garcia Institute of Astrophysics and Space Sciences'  Are curvature singularities so bad? some counterexamples




round geometry
A geodesically complete space-time Theories and approach
Geode

Theories and approach

P This space-time is an exact solution of quadratic gravity [1207.6004 [gr-gc] (PRD)]:

1
SQuad = m/dl‘xv*g [R+|82(3R2+RWRW)}
1 4
~ fon/ 9xVORWEY

» and also of Born-Infeld gravity [1311.0815 [hep-th] (PRD)]:

S /d‘*x[ —\guv—lezRuv(r)\—?\\/—_g]

K2€e

1
— [ d**/—gFwF"
167 9Fw
» Standard electromagnetic Maxwell field as matter — energy conditions are satisfied.
» Formulated in the Palatini approach: metric and connection as independent fields:
»> Second-order field equations.

> Vacuum equations are Minkowski or (A)dS solutions — no extra propagating dofs.
> In GR (and Lovelock), metric and Palatini formulations coincide.

Diego Rubiera-Garcia Institute of Astrophysics and Space Sciences'  Are curvature singularities so bad? some counterexamples



A geodesically complete space-time
Geodesics

Geodesics

> Parameterize a geodesic curve Y = x*(\) with tangent vector ut = % and affine

parameter A:
d?xH L odx®dxP
dA2 @B dN dN

» Comments:

> The metric defines a natural connection (Christoffel) and defines a set of
geodesics.

> The independent connection can be used to define a different set of geodesics.

» Assuming the EEP and since matter is not coupled directly to the independent
connection we assume geodesics to be those of the metric.

» By spherical symmetry there are two conserved quantities: L = r2d ¢/dA (angular
momentum per unit mass) and E = Adt/dA (total energy per unit mass).

» Rewrite the geodesic equation in terms of the geodesic tangent vector

30V o b
o2 \dx/) r2(x)

where k = 0(1) for null (time-like) geodesics.
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Background geometry

A geodesically complete space-time Theori nd approach
Geodesics

» Radial null geodesics (k = 0,L = 0) integrate this equation as

4
Fil-3.3. 550 if x>0
+E-AMx)=
2x0 —2F1[— 47274;r4]" if x<0
A
//
WH case: A=A(x) oI //
o GR case: A=x

L x
2

> The affine parameter A(x) extends over the real axis and the space-time, no matter the
behaviour of curvature scalars.

> In GR:r(A) = £EA, the affine parameter is only defined on the positive/negative side of
the real axis because r(A) is positive.

> Null (with L # 0) and time-like geodesics are complete as well no matter the behaviour of
curvature scalars.

Are curvature singularities so bad? some counterexamples
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Background geometry
A geodesically complete space-time Theories and approach

Geodesics

> f(R) = R — YR? gravity with Born-Infeld electrodynamics

/d4x\/_f(R)+—/d4x\/_Bz 1— 14+ 2

e

» Wormbhole structure:

Infinite affine time — these wormholes lie beyond the reach of any observer or signal!.

Diego Rubiera-Garcia Institute of Astrophysics and Space Sciences'  Are curvature singularities so bad? some counterexamples




Final remarks

Final remarks

» Geodesics in these space-times are null and time-like complete for all spectrum of mass
and charge, i.e., no matter the behaviour of the curvature scalars.

P> Not “designed”: they arise in reasonable extensions of GR where matter satisfies the
energy conditions.

» Curvature divergences and tidal forces? describe physical observers as a congruence of
geodesics (Tipler, Krolak, Nolan, etc).

» Causal contact among the constituents making up an extended object crossing the
wormhole throat is never lost [1602.01798 [hep-th](CQG)]

» The problem of the scattering of waves off the wormhole is well posed — no absolutely
destructive effects happen upon physical observers [1504.07015 [hep-th] (EPJC)].

» WH structure and geodesic completeness a general feature: also with anisotropic fluids
[1509.02430 [hep-th]] and in higher dimensions [1507.07763 [hep-th] (PRD)].

» Bouncing cosmologies exist for these same theories [1406.1205 [hep-th] (PRD)].

» Palatini formulation of modified gravity is essential for these results [1412.4499 [hep-th]
(PRD)].

THANK YOU FOR YOUR ATTENTION!
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Future singularities in cosmology

Diego Saez-Gomez
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Outline

* FLRW cosmologies: late-time acceleration
 Singularities in General Relativity
» Classification of future singularities in cosmology

 Testing some singular models with data: Is the universe approaching
the doomsday”?



FLRWV cosmologies

FLRVV metric:

ds® = —dt’+a’(t)

General Relativity:

FLRWV equations in General Relativity

a

2 (g)Q _81Gp K

K

For a perfect fluid with an equation of state, w = p/p

2
3(1 +w)(t —tg)

a(t) o (t — to) 30
—3(1+w)

p X a

Radiation : a(t) o (t —to)Y/?, poca™®,
Dust : a(t) x (t —t0)*?, poxa™3.



FLRWV cosmologies

Dark energy equation of state D =wp

w > —1, quintessence fluid
w = —1, cosmological constant
w < —1, phantom fluid

Einstein gravity Dark energy
S:—/d4:c\/—gA

S= / de =g (%auqsa% - V<¢>)

1

_ 4 a
- 167G d'x g R

1

S = —Z/d4az v—9 F,F*

S = / d*zv/—g F(R)

S = / d*z\/—g F(R,T)

E.J. Copeland, M. Sami, and S. Tsujikawa. Dynamics of Dark Energy. Int. J. Mod. Phys. D, 15:1753-1935, 2006, arXiv:hep-th/0603057S. Nojiri and S. D. Odintsov, eConf
C0602061, 06 (2006); hep-th/0601213; arXiv: 0807.0685; S.~Capozziello and M.~De Laurentis, Phys. Rept. 509, 167 (2011), arXiv:1108.6266; S. Capozziello and V. Faraoni,
Beyond Einstein Gravity, Fundamental Theories of Physics Vol. 170, Springer Ed., Dordrecht (2011); V. Sahni and A. Starobinsky. Reconstructing Dark Energy.  Int.J. Mod.
Phys. D, 15:2105-2132, 2006, arXiv:astro-ph/0610026......



Singularities in General Relativity

Geodesics completeness:

A regular spacetime is defined as far as its geodesics are complete, i.e. as far as the
geodesics go smoothly through the singularity.

daxH dz® dz?
4T —
d\2 thap dx d\ %

Geodesic deviation (Tipler and Krolak criteria):
Even if geodesics are regular through the singularity, the infinitesimal distance

between them may diverge, affecting the tidal forces. In order to account the
possible effects on finite volumes, one may study the following integrals:

/ d)\’/ dN' R ;u'u,

K (u) :/0 AN Rijutul .

If the tidal forces are strong enough (above integrals diverge), and the volume
shrinks to zero, the singularity is said to be strong.



Future Singularities in Cosmology

Classification of singularities

S. Nojiri, S. D. Odintsov and S.Tsujikawa, Phys. Rev. D 71, 063004 (2005)
L. Fernndez-Jambrina, Phys. Rev. D 90, 064014 (2014)

e Type I (“Big Rip singularity”): For t — t5, a — oo and p — o0, |p| = oo. Time-like geodesics are incomplete.
R. R. Caldwell, M. Kamionkowski and N. N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003).

e Type II (“Typical Sudden singularity”): For ¢t — t5, a — a5 and p — ps, |p| = 00. Geodesics are not incomplete.
This is classified as a weak singularity.
J. D. Barrow, Class. Quant. Grav. 21, L79 (2004)

e Type III (“Big freeze”): For t — ts, a — a5 and p — 0o, |p| — 00. No geodesics incompleteness. They can be
weak or strong.
M. Bouhmadi-Lopez, P. F. Gonzalez-Diaz and P. Martin-Moruno, Phys. Lett. B 659, 1 (2008).

e Type IV (“Generalized Sudden singularity”): For ¢t — ts, a — as and p — ps, p — ps but higher derivatives of
Hubble parameter diverge. They are weak singularities.
M. P. Dabrowski, K. Marosek and A. Balcerzak, Mem. Soc. Ast. It. 85, no. 1, 44 (2014);

e Type V (“w-singularities”): For t — t5, a — oo and p — 0, |p| — 0 and w = p/p — oo. These singularities are

weak
M. P. Dabrowski and T. Denkieiwcz, Phys. Rev. D 79, 063521 (2009).



Future Singularities in Cosmology

Some singular models

J. Beltran Jimenez, R. Lazkoz, DSG andV. Salzano, arXiv:1602.0621 |

We parametrise the Hubble rate in such a way that each model may contain a

singularity.
our | N.O.T. H(x) a(x) a H H H p D Weff
A I 2 + m a0z 3 (xs —ax) 3" 00 00 00 co oo —oo ws<O0
n 2
B 111 2 + 3\/;% aoz3 exp [—5ny\/xs (zs — )] as 00 00 0O 00 —00 @ —Q
C 111 2 — 2?”log( - %) o3 exp[—2n(z —zs) (-1 +log [l — z/zs])] | as 00 00 0O 00 —00 —00
D II 2422 /1-E= ao (x/a:s)%exp[—%-najs (1—:1:/:1:5)%] as Hg>0 —00 —00  ps OO 00
3/2
E | IV | 242 (1—%) ao (2/24)5 exp [~ & - nza (1 — 2/7.) 7] as H,>0 H,<0 oo ps O 0
where r=1t/ty, xs="1s/tg




Data

Hubble parameter from early-type galaxies Baryon Acoustic Oscillations
M. Moresco, MNRAS 450 (2015) 1. C. Blacke, et al., MNRAS 425 (2012) 405.
24 2 —
X2 . Z (H(sz,g) — Hobs(xz')) XQBAO = A:F-BAO - C L ATBAO ,
H — 2 ' 9
i=1 o (i) Alcock-Paczynski distortion parameter
o H(z)
Here we use a gaussian prior on Hy = 69.6 + 0.7 F(z) =1+ 2)Da(z) »
Supernovae la D _ ¢ T dz
A(Z7 0) — ~
N. Suzuki, et al. (Union 2.1), Ap) 746 (2012) 85. (1+2) Jo H(z,0)

Xon = AF N . Cch L AFTY
Distance modulus
po = 5logyoldL(z,0)] + po

dr(z,0) = (1+ 2) /0 Hgog)dfé

Total chi*2 to be minimized: X2 — X%{ + X%[O - X%N T X2BAO



Results

Markov Chain Monte Carlo. Free parameters: n, to, ©s = 1 —loga,
1d. Qo Hy to Wef,0 Bi; logB;;
km s~ Mpc™! Gyr
ACDM 0.3019-:93 69.670 7 13.5710-33 —0.70 1 0
id. Qm Wo Wq Hy to Wef,0 Bi; logBij
km s~! Mpc™* Gyr
CPL | 0367995 —0.93t025 —1.717315 69.5707 13.2975-39 —0.60 1.9  0.63
id. n Qg ts 1/to to Wef,0 Bi;  logBi;
to km s 1 Mpc_1 Gyr
Uniform prior
A 0.287007  0.27T01¢  2.30108L 69.971S 13.997030 | —0.727512 | 1.5 0.42
B 0.347907  0.42%03%  1.86752) 69.477°7 14.10753% | —0.697011 | 1.6  0.48
C 0.9970-57 < 0.28 > 2.28 71.871% 13.627027 | —0.917222 | 25  0.90
D 0.7219-1L < 0.27 > 2.32 66.6150 14707945 | —0.4972%% 1 135  2.60
E 0.9610 15 < 0.10 > 3.33 65.213 3 15.011923 | —0.44700¢ | 436  3.78
Logarithmic prior
A 0.237919 < 0.31 > 2.16 69.8755 14.031955 | —0.69701% | 2.0  0.67
B 0.361024 < 0.47 > 1.74 69.375 % 14127049 | —0.74701% | 2.2 0.79
C 1.8275 %% < 0.06 > 3.79 717113 13.647025 | —0.867014 | 1.8  0.57
D 0.62700s < 0.05 > 3.98 67.277°% 14567055 | —0.547005 | 6.3 1.84
E 0.85101% < 0.05 > 3.95 65.8152 14.877028 | —0.471002 | 25.4  3.24
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Conclusions

e Two of the models (A and B) are as
good as LCDM model, according
to Jeffreys scale.

HOME NEWS TECHNOLOGY SPACE PHYSICS HEALTH EARTH HUMANS UFE TOPICS EVENTS JOBS MAGAZINE

Home | News | Physics

DAILY NEWS 25 February 2016

e The prior on o determines the When will the universe end? Not for
higher bound on ts, going to at least 2.8 billion years

infinity  when  assuming a
logarithmic prior.

e We found that the proximity of the
singularity to the present time has a
mild dependence on the type of
singularity for our
parameterisations, but we can
conclude that in all cases there is a

consistent lower bound around 1.2
— 1.5t0 .
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Stabilization of the sign of the gravitational constant
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General Aim

@ We speculate on the possibility that the gravitational constant G might be negative in the past
history of the universe and investigate a cosmological mechanism that stabilizes the
positiveness of the sign of G.
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Newton and Einstein’s G
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Motivation Goals |

@ Newton "De mundi systemate”:

e (...) the forces are like the quantity of matter in each
body (...)

o Given that the centripetal action on the attracted
body is, at a given distance, proportional to the
quantity of matter of the latter, it is reasonable that it
should also be proportional to the quantity of matter
of the attracting body. Thus the action is mutual.

@ P. S. Laplace (Traité de Mécanique Céleste, 1799):

Seemingly, for the first time an explicit gravitational

constant
mi1mso
F=—kK? —2 (1)

positive ... yet
@ H. Cavendish (1798) Torsion Balance:

6.75 x 10~ 11 N m?2 /kg? (quite close to the present
value of 6.67259 x 10~ 11 N m? /kg? .

Library of Congress
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Motivation and Goals Il

@ Recently, several new measurements from respected research teams in Germany, New
Zealand, and Russia have produced new values of G that wildly disagree (see
http://www.npl.washington.edu/eotwash/bigG)

@ Also, a controversial 2015 study by Anderson et al. [EPL 110, arXiv:1504.06604] suggested a
periodic variation having a period of 5.9 years, similar to that observed in the length of day
(LOD) measurements ...

@ G. Rosi et alin Nature. 2014 Jun 26;510(7506):518-21,

“report the precise determination of G using laser-cooled atoms and quantum interferometry.
We obtain the value G = 6.67191(99) x 10~11 m?® kg—1 s~2, with a relative uncertainty of
150 parts per million (the combined standard uncertainty is given in parentheses).”

FC Ciéncias
ULisboa
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Motivation and Goals llI

FC Ciéncias
ULisboa

@ A. Einstein The general theory (1915)

8rG
2

G =
. c

Ty

@ P. M. A. Dirac (1938) “The large numbers hypothesis”
Gx H,

JPM (Faculty of Science, University of Lisbon & IA)
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Motivation and Goals: Modified Gravity

@ Unification theories: H. Weyl (1919), Kaluza-Klein (1921), Einstein
i’ (himself) and collaborators

@ Mach’s principle (D. Sciama), and in the suite C. Brans and R.
Dicke (1961) proposal of theory conveying the variation of G to ful
the latter goal

@ Ggravitational fields near curvature singularities;

@ First order approximation for the quantum theory of gravitational
fields.

""’H @ Renormalization approaches to GR in the 1960s and 1970s
equations of fourth or higher order, instead of second.

FC Ciéncias
ULisboa
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Goals

@ Consider general scalar-tensor gravity theories (extending BD theory)
@ Envisage the possibility of G becoming negative
@ Perform a study of the dynamics of cosmological models.

@ Assess whether there is any cosmological mechanism that drives the sign of the gravitational
constant to be positive and stabilizes the sign of G.
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General Scalar-Tensor theories

@ So, we consider a general scalar-tensor gravity theories given by the action

S:/{¢R—5%Lm@#—2m@+1mg4\ﬁgfx, (4)

where a potential term U(¢) of cosmological nature is considered. (We shall also use
U() = ¢ A(¢))

@ The field equations are

1 1 .
Rap = 5 9ap R = X®) gop = wd()f) [¢;a¢;ﬁ -3 gaﬁquﬁ”]
1 o Tap
— B — GaB®:’ 8r —— 5
+ ¢[¢>,5 Gopbin ] + ) ©)
202N (¢) — 20A(¢) 1 / ;
T @ s w0t @

where T' = T, is the trace of the energy-momentum tensor, T, 7.
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FLRW equations

@ For the FLRW models the field equations read

a\* .ad .k _ w(¢) ¢* P
d (a a\? ad Kk w(9) ¢? p ¢
v a, 202N (¢) — 20A(¢)
o3¢~ 2w(p) + 3 -
1 / 12
2%(0)+3 [877(317— p) +w'(P)9 ] . (9)

Notice that the cosmological potential U(¢) = ¢ A(¢) effectively reduces to a cosmological
constant when A\(¢) = Ao = constant in this frame

FC Ciéncias
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Introduce the redefined variables

X = ¢a?, yzﬂMg)—’—S%; (10)

and use conformal time dn = dt/a = di/v/X, where di = /¢ dt.

@ The generalized Friedmann equation

(X')2+4kX2 — (Y' X)2 =4M X (%)7 +§ (M) 3 (1)

@ The scalar-field equation

Y X]' = M(4-39) ‘/zwis (%) o \/% (% - j—;) (12)

@ The generalized Raychaudhuri equation

X" +4k X =3M(2—7) (%)

where M is a constant defined by M = 8mpg/3.

FC Ciéncias
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SUMMARY

e We have systematically explored the space of scalar-tensor theories of gravity using a novel

approach based on differential forms.

e We have found a finite and closed basis of Lagrangians that describes general scalar-tensor

theories. Among others, 1t contains Horndeski’s and Beyond Horndeski’s Lagrangians.

e In order to determine which combinations of Lagrangians give rise to second order equations of

motion (e.o.m.), thus becoming automatically ghost free, we have computed the e.o.m.

e With the objective of distinguishing truly independent theories, we have determined all possible

exact forms (total derivatives) and antisymmetric identities relating different Lagrangians.

e This new formulation has interesting potential applications due to its computational

simplicity and systematic structure.

JM. HEzquiaga 30th of March, IberiCos’16



1 Scalar-Tensor Theories 1n a Nutshell

Cosmological Considerations: Theoretical Considerations:
e FEipochs of Accelerated Expansion: Early e Simplest modification GR: add 1 degree
and Late Universe of freedom

e Tests of General Relativity and ACDM

e Warning: Ostrogradski’s Theorem

BEl.o.m. with higher than 2 time derivatives
induce linear instabilities in the Hamiltonian

e Most general second order e.o.m. in 4D

given by Horndeski’s theory

(local+Diff. inv. theories)

JM. HEzquiaga 30th of March, IberiCos’16



2 Differential Forms and Gravity

e General Covariance (.

Local Lorentz Transformations (LLT) in the Tangent Space

e Geometry (and Physics) is encoded in the vielbein 6% and the 1-form connection w®% = |R%

Needed to couple fermions to gravity!

Diff Inv.) can be reinterpreted as the invariance under

In a pseudo-Riemannian manifold (usual spacetime without torsion and metric compatible)

Example: Lovelock’s Theory

[

1=1

'C(l) — /\ Raibi N\ 9*a1b1“'albl where e*ay--ak — (Dik)!eal'”akak—l—l'”aD A AN

JM. BEzquiaga

30th of March, IberiCos’16



Daifferential Forms Dictionary

g = g,uudm

Metric Formalism

a b
g,uy — nabe ,Lbe v

1 (87
F)\,uu _ §g>\ (a,ugal/ T aug,uoz — aag,uu)
A A A A A
1 prp 0, I pp OpT uv T FWMPF Yoo FWWF P
Vﬂgag =0

A A
F/w_rvu

e Invariant objects: Mab and €ajas---ap

P Qdr” = nwb” ® 6°

Vielbein Formalism

0¢ = e“ﬂda:“

1
wab:_

2

Wab = —Whq
T ="DO* =0

o Basic operations: wedge product, exterior differential, integration...

e DBasic identities: Cartan structure egs and .

Bianchi identities T = DO,

(i (dO") — ica(dB°) + ica(ice (dO.))0°)

Rab — Dwab — dwab —I— (.Uac A\ (.Ucb

Y =Dw%, DI'" =0 and DRy =0

JM. BEzquiaga

30th of March, IberiCos’16



3 A general basis for Scalar-Tensor Theories

e Define 1-forms with derivatives of the scalar field (at lowest order)

P =VeVyo 0° P = VeV 0°

and construct a basis of Lagrangians invariant under LLT in a pseudo-Riemannian manifold.

[ m n
i b; ' d
‘C(lm”) — /\ R" 4 /\ DA /\ WEEA H*Cllblmalblcl"'Cmdl“'dn

—» (Clear structure in terms of the number of fields: p=2l+m+n < D

—> Finate basis due to antisymmetry

—— (Contains well-known theories, e.g. Horndeski and Beyond Horndeski

JM. HEzquiaga 30th of March, IberiCos’16



p<D

e Action of a general scalar-tensor theory: S = Z

o Hxamples: some 4D Lagrangians

[:(()()1) — W% A H*a — V'LL¢V’LL¢?7 — —2X77

[,m.,n

M

Oélmn»c(lmn)

(n=v _9d4xa " 1y = Pipa, ¢;O”L;Oéz -

'C(OIO) — O A 9*a — [(13]77
Loy = R™ ARGy = (2B + Rg™) B = —2(C D)

L030) = @“ A O° N DN O* . = ([®] — 3[®][@%] + 2[®°])n

G, [0 = B, )

L (200) = R® AR A 0" abed = (Bpuwpy RMPT — 4RaﬁRaﬁ + R,

e The basis 1s closed under exterior derivatives if contractions with the gradient field are included

« Notation: over bar indicates contractions with V%¢ e.g. Lpig) = Va9P* A e*bv%

« Additional Lagrangians: L (j,n)

and L:(lmn)

JM. BEzquiaga

30th of March, IberiCos’16



4 Results

e We compute the e.o.m. both for the scalar field ¢ and the vielbein 6° for arbitrary dimensions

— The calculations greatly simplifies
— We find all possible Lagrangians with 2nd order e.o.m.

e« We obtain all the exact forms (total derivatives) and antisymmetric algebraic identities

—» We determine the number of independent Lagrangians

e Results in 4D:
—— There are 10 independent elements in the basis of Lagrangians

— Only 4 independent linear combinations give rise to 2nd order e.o.m.
-This set can be associated with Horndeski’s theory

JM. HEzquiaga 30th of March, IberiCos’16



e Relations among second order theories 1n 4D:

p=0: L 000)

A

(81)

2\ g

. (13) L5 |G2] =G2L 000

* Lo 2 (52) L3'[Gs] =G3L010)
\}ll _ -
H

p =2 5(100) 5(011) D NN 5(020) £4 G4 —G4£(100) + G4 XL(OZO)

AR A | 74 AN

(83)% L o o LIGs] =G5 L e,

|(83) g ~(100) ¢vivvvrinnnanany ~(020) K\(84)' 5 [ 5] — 5 (110) _|_ g 5,X (030)

\I/k,/ f:{\L__]

r (75) /,” *. T (76) /,"T

Laioy ¢ (85) 7 L(110) ¢ovvoveeveeey L(030) £ (86),
____________ Tae AV
p:4: £<200) ﬁ(lll) (ornrnrnnnnnnnnend £(120) 'L£(031):(>£(040)
""" AR LT (77) PEALN ’:n___ (78) />r4~
BTS2 Lizooy 5y Lazoy 2 _88) 3 Loy 5 Lioao) $189)
D—1 L
oy DLGOG] = Gi g Lm(nt+1) —Gix L mgyn) TG (C(l(mﬂ)n) — ML) (m—1)n) — ”ﬁ(l(mﬂ)n))
€¢--=-=-=-=-- > E(lml) — _QZL(l_mO) — mﬁ(lmo) — 2X£(lm0)

JM. HEzquiaga 30th of March, IberiCos’16



5 Discussion

e New formulation for scalar-tensor theories in the language of differential forms.

e This approach simplifies the computations and allows for a systematic classification of general

scalar-tensor theories and the relations among them.

e We have proven that Horndeski’s theory correspond to the most general Lagrangian in 4D

invariant under LLT in a pseudo-Riemannian manifold and constructed with 6% R’ W% and ®“

e The relations among second order theories can be used to connect, for instance, different

covariantizations of Galileons theory.

JM. HEzquiaga 30th of March, IberiCos’16



6 Future Prospects

e There are interesting potential applications of this new formalism:

e Analyze phenomenological and theoretical properties of concrete scalar-tensor models.

e Investigate the role of fermions in scalar-tensor theories of gravity.

e Hxplore general field redefinitions and determine which of them leave this basis of

Lagrangians unchanged

e Systematically study scalar-tensor theories with higher derivative e.o.m.

JM. HEzquiaga 30th of March, IberiCos’16
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Gravitational waves exist! But what can they teach us about
the theory of gravity?

What drives the late-time acceleration of the universe? Is it
dark energy, modified gravity, or A ?

This talk: The implications of large-scale modifications of gravity
for the propagation of gravitational waves
and vice versa



What is modified gravity”

Moditications of gravity will modify in one or the other way the propagation of the
only degree of freedom in GR: the graviton

hi + (2+ am YHh;+ cr k*hj+a" 11” hj=a" Ty;

The most general, second-order theory built out of - _1dIn M; 2
the metric and a scalar ¢ am = H(t) At and cr # 0
GR minimally coupled to a dynamical vector field c% £0

with non-trivial vacuum-expectation value

Bi-metric gravity:
Most general theory constructead
out of two interacting, rank-two fields

and [ 7ij * 0



The gravitational slip and its significance

The evolution of large-scale structures can be well-described by small, scalar
inhomogeneities around an FLRW spacetime

ds® = — (1 + 2 Y(t,x )) dt® + a(t)? (1 + 2 ®(t,x )) dx?

Galaxies are test particles which’ density fraction is related to that of dark matter
through a bias function b(z k)

dp(z, k) = b(z, k) dm(z, k)

Neglecting any relativistic species, any genuine modification of gravity will
source a gravitational slip

d — W =Aloj] - X(t, k) I S

~N v

Free model parameters




Observables on the sky

Studying galaxy clustering Light reaching us from distant sources
in redshift space reveals gets distorted on its way
information about galactic velocities due to large matter inhomogeneities

n -
\
Source plane
' ;:.
| i
| /
. .
|
|
|
I
T
:\4 D.
Lens plane
1B

e/ b"lpc

2. i
s(r) =r+ v(r) - ¥, Vv(r) ~ VV¥(r) d”x — 8' (cb + v ) = iicblens




The gravitational slip Is a model-independent observable

3
n(z, k) = (z, k) — ,3(1 T Z), Piens 1
W(z,k) 2E2(%/oy+E/e+2) Op
E(Z) = H(Z)/HO | Oy = _vaa//H
n=1 n# 1
NCDM f(R), f(Gauss-Bonnet), ..., Horndeski

Einstein-Aether
GR + minimally-coupled to curvature scalar:

Quintessence, k-essence, KGB Bi-metric (massive) gravity

L. Amendola, M. Kunz, IDS, I. Sawicki PRD 87, 023501 (2013)/M. Motta, I.Sawicki, M. Kunz, IDS, PRD 88, 124035 (2013)



Non-trivial gravitational slip leads to moditied propagation
of gravitational waves

For general modified gravity models introducing an extra
scalar (Horndeski), vector (Einstein-Aether) and a tensor field
(massive/bi-metric), the theory parameters controlling the
linear anisotropic stress match those modifying the evolution
of gravitational waves.

WY+ (2+ am )HH;+ & K2hy+a° 1i° hy = a® T

o
® — V= A(ay, c5, u°,T) - X(t, k) n=- 71

IDS, I. Sawicki, L. Amendola, M. Kunz, PRL 113 191101 (2013)



Modified propagation of gravitational waves implies the existence of
shear at large scales

C=o—WV=AJ[o;]X(t, k)

AN

model parameters {®, ", vx, vx}

{®, 0"}
A C — O
If at some initial time and scale C = 0,
C~C’ preservation of the condition requires that
on-shell

C%C/ C%CI, chl//




Moditied propagation of gravitational waves implies the existence of
shear at large scales

Bi-metric gravity
1 free relevant
coupling

12

No go theorem:

No dynamical screening

Einstein-Aether exists at large scales

3 free constant couplings

AR

131, :BZ, 183
rmm—— Nume_rlcal analysis:
. No screening was found unless
4 free relevant functions : : Y
ol tlenn possible very fine tuned situations

apm,XT,0K, B

To appear very soon, together with L. Amendola, M. Kunz, M. Motta, I. Sawicki



Summary

The existence of gravitational slip modifies the propagation of
gravitational waves:

The theory parameters controlling the gravitational slip, are exactly those
modifying the propagation of gravitational waves.

A modified propagation of gravitational waves implies the existence of
gravitational slip:

It is (almost) impossible to screen modifications of gravity at large scales
within broad classes of models.



SOC ANA ACHUCARRO (LEIDEN/BILBAO),
FERNANDO ATRIO-BARANDELA (SALAMANCA),
MAR BASTERO-GIL (GRANADA), JUAN GARCIA-
-BELLIDO (MADRID), RUTH LAZKOZ (BILBAO),
CARLOS MARTINS (PORTO), JOSE PEDRO
MIMOSO (LISBON), DAVID MOTA (OSLO)

LOC ANA CATARINA LEITE, CARLOS MARTINS
(CHAIR), FERNANDO MOUCHEREK, PAULO
PEIXOTO (SYSADMIN), ANA MARTA PINHO,
IVAN RYBAK, ELSA SILVA (ADMIN)

11* lberian Cosmology Meeting

IBERICOS |

w'Ww.lastro.pt/||oer|c 5 £

oS

AAAAAAA



Screenings with three-form fields J

T. Barreiro!2, U. Bertello! and N. Nunes!3

* ~ OB
lal UNIVERSIDAD! [ Ciéncias
1 e > 1% LUSOTFONA . [C i
IberiCos 2016

Tiago Barreiro IberiCos 2016 1/12



Screening scalar fields

Scalar fields coupled to gravity
Chameleon fields, Vashtein mechanism, Symmetron fields, ...

The couplings depend on the local mass density:

Low mass density High mass density
large coupling ~ altered gravity small coupling ~ GR

Tiago Barreiro IberiCos 2016

2/12



Screening vector fields

Action for a vector field B#

4 —_— —
S = / d*z\/— {16 G
with F,, =V, A, -V, A,

1

4

Matter couples to a conformal metric

G = L(B*) gy

Field equations in Minkowski spacetime

OB, =

Tiago Barreiro

OVett
0 B2

Bz,in (7“)

e sinh(ar/rc)

Bz,out (T)
%6_77’/7" +Bz’0

L4

12

F? — %(VMB“)Q —~V(B? ] / d*z\/=§ Ly,

IberiCos 2016
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Screening three-form fields

Action for a three-form field A3,

S = /d%ﬁ[mw 418 V(A2] /d%\ﬁL

with Faﬁ»yé = 4V[Oé‘45’ﬂ5}'
again, matter couples to a conformal metric g, = Q2(A42)g,

Tiago Barreiro IberiCos 2016 4/12



Dual vector field

It is more convenient to use the dual forms of A and F' that are

@ avector field By = 3ie0,5A477°
o ascalar field ® = Je45,6F*7°

where EaBys = vV —Y €aBvs
in particular,

A’ = 6B F? = —249?

Tiago Barreiro

IberiCos 2016
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Field equations

The field equations are

o T Pome

ov Ry
Vo(VEB,) = — N
_( _,“) 2 < p aB2> B

Veﬁ(Bz)

OVt
0B?
with the scalar field being ® = V* B,

we use V(B?) = —im?B? — 1

iB* and  Q(B%) =1+ 35

Bl

Tiago Barreiro

IberiCos 2016 6/12



Spherical solutions

Spherical body: radius r., density p.

Tc
“core” (inside) “shell” (inside) outside
r < Trg pe>1 re <1 <Te pe>1 T > T pp K1
M = 2pe/ 1 Mgy & —pe/ 1 ma & m?

Tiago Barreiro IberiCos 2016
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Spherical solutions

B = go + b
The field equations are V(V - b) = m2;b

Defining ¢ so that b = V¢ they become

V26 + mige = 0
Solutions are
We need the | = 1 solution:
inside:  f(r) = Ber

shell: f(r) = aji(msr) + by1(mgr) = asin(mgr + ) /(mgr)
outside:  f(r) = cki(mor) = (1 + mor)e ™" /(mor)?

Tiago Barreiro

, Where f; are spherical Bessel functions.

IberiCos 2016
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Spherical solutions

Ar"‘é’ﬁ

~~
PcTc

IberiCos 2016 9/12



Observational constraints

@ Time-delay experiments
goo = —1—2W

@ Eddington parameter ~ in the Jordan frame G =120

2B?
pAvg

2 T’ 6 p,
- () 2

v=1
@ From the Cassini bound |y — 1| < 1075 we get

1 > 50 MeV

Tiago Barreiro IberiCos 2016
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observational constraints

10

10
0
(GeV) 1o
10
50 MeV —

Tiago Barreiro

8

IberiCos 2016
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Summary

@ We get a “thin shell” effect in this three-form scenario, the field is constant inside a
massive body.

@ Different behaviour to previous vector or scalar field solutions
@ Angular dependence in modification of general relativity.

Tiago Barreiro IberiCos 2016 12/12
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