Photoionization models for extreme Lyα and Hell ratios in quasar halos

Andrew Humphrey

Institute of Astrophysics and Space Science, Portugal

Montserrat Villar-Martín, Luc Binette, Rahul Raj

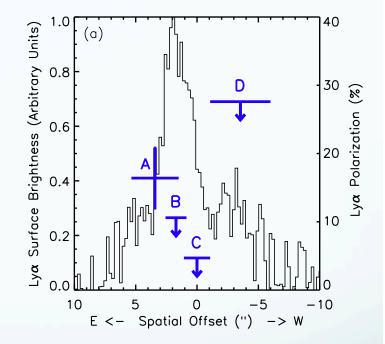
Humphrey et al., submitted

Humphrey et al., in prep.

Galactic Labyrinths, Crete 13 Sept 2018

Motivating questions

Unusually high (extreme) Ly α /Hell in some AGN Ly α halos


- e.g. z>2 radio galaxy halos: Villar-Martín et al. (2007) Ly α / Hell > 30
- e.g. Borisova et al. (2016) Lyα/Hell ~100 or more in some high-z quasar halos
- Compared to Lyα/Hell ~ 20 for Solar metallicity gas ionized by a powerlaw at moderate to high ionization parameter

Mechanisms to "enhance Ly α " above Case B recombination values (AGN)

- Collisional excitation e.g. Villar-Martin et al. (2007)
- Resonant scattering e.g. Cantalupo et al. (2014)
- Ionizing SED shape e.g. Humphrey et al. (2008), Arrigoni Battaia et al. (2015)

Motivating questions:

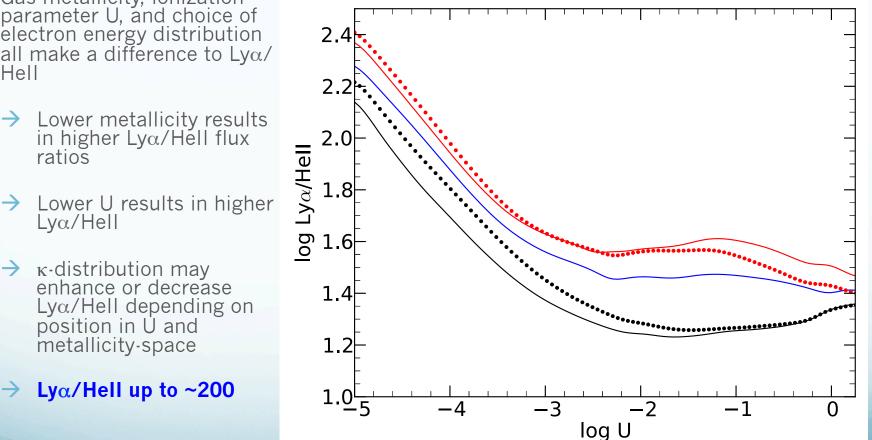
- \rightarrow Can these effects work together to produce "extreme" Ly α ratios?
- → Required range of parameters/conditions?

Highly polarized (P=16.4%) extended Lyα emission around a z=2.3 AGN (Humphrey et al. 2013)

The MAPPINGS 1e Photoionization model grid

- MAPPINGS 1e code (Luc Binette)
- Single-slab, ionization-bounded
- n_H=1 or 100 cm⁻³
- Varied parameters:
 - Iog U = -5 to +0.25
 - lonizing power-law α =-1.0,-1.5,-2.0
 - $S_v \propto v^{\alpha}$
 - Or α =-1.5 powerlaw filtered by optically thin screen (F_{esc} = 0.90, 0.74, 0.50, 0.28)
 - Gas metallicity 0.01, 0.1 or 1.0 x solar
 - κ-distributed electron energies **or** Maxwell-Boltzmann
 - $\rightarrow \kappa$ =20 ... future paper to look in detail at the impact of κ in AGN

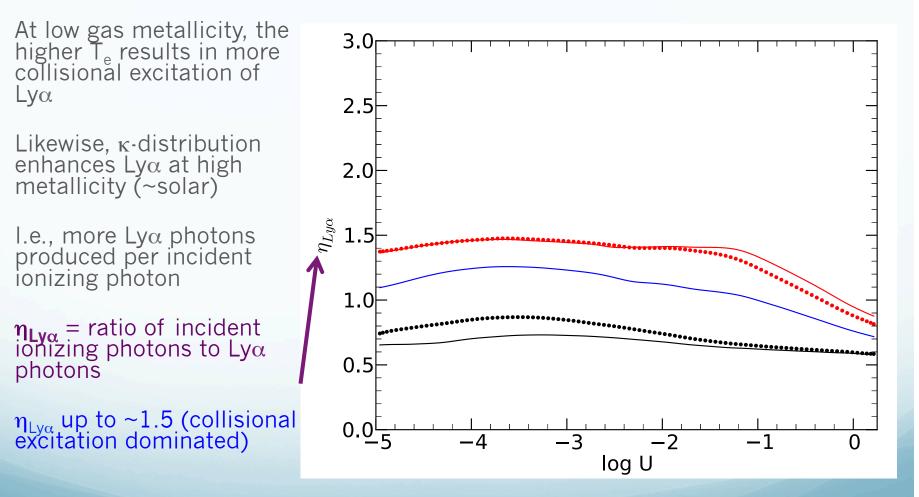
Andrew	ws-MacBook-Pro-2:/opt/mappings/seq15] ajh% rms	
	Output data \$outw: /opt/mappings/seq15	
	Atomic data \$labi: /opt/mappings/labi	
	Bienvenue Bienvenido Willkommen Bem vindo Welco 2012.50 MAPPINGS Ie k=Aknowledgement h=Help [u	ome unix]
	Hydrodynamic code (h1/h2/h3/h4)	
	Shock wave code	
	Test / Test 'x' / IMax (+26) (t/t'x'/i)	
	Charge_transfer(OK) / Re-init. / Output (c/r/o) Abundances (Z: 1.0000 ; dust: 1.0000) (a/ban###)	
	New_dust (.dat) / neW_bins (-322) (n/w)	
	Batch_mode / batch_catalog_File / End (b/f/e) Included: ALL ions of H He C N 0 Ne Fe Mg Si S Ca Ar	


Enhanced Ly α /Hell : Low U, low metallicity, and k

2.4 low U 2.2 2.0 log Ly $_{lpha}$ /Hell 1.8 1.6 1.4 =7 7 = 0171.2 7=0.01Z high U • Z=Ζ_☉ κ=20 Z=0.01Z _~ κ=20 1.01.3 1.4 1.51.6 1.7 1.8 1.9log Ly α /H β

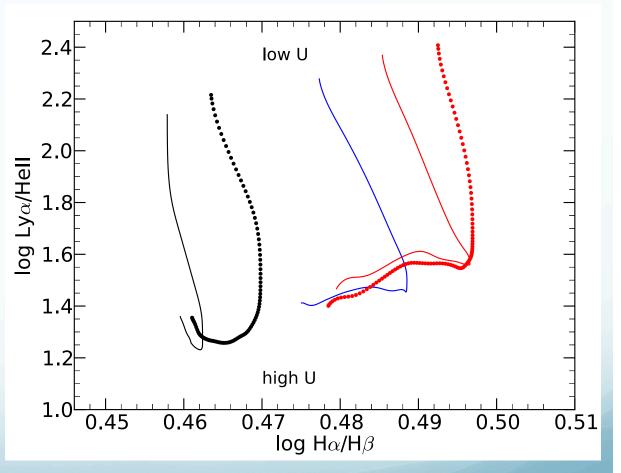
Gas metallicity, ionization parameter U, and choice of electron energy distribution all make a difference to $Ly\alpha/$ Hell

- Lower metallicity results in higher Lyα/Hell flux ratios
- \rightarrow Lower U results in higher Lya/Hell
- $\rightarrow \kappa$ -distribution may enhance or decrease $Ly\alpha$ /Hell depending on position in U and metallicity-space
- $Ly\alpha$ /Hell up to ~200


Enhanced Ly α /Hell : Low U, low metallicity, and k

Gas metallicity, ionization parameter U, and choice of electron energy distribution all make a difference to $Ly\alpha/$ Hell

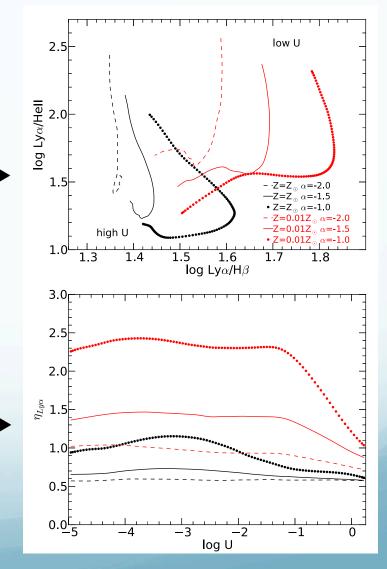
- → Lower metallicity results
- \rightarrow Lower U results in higher
- $\rightarrow \kappa$ -distribution may

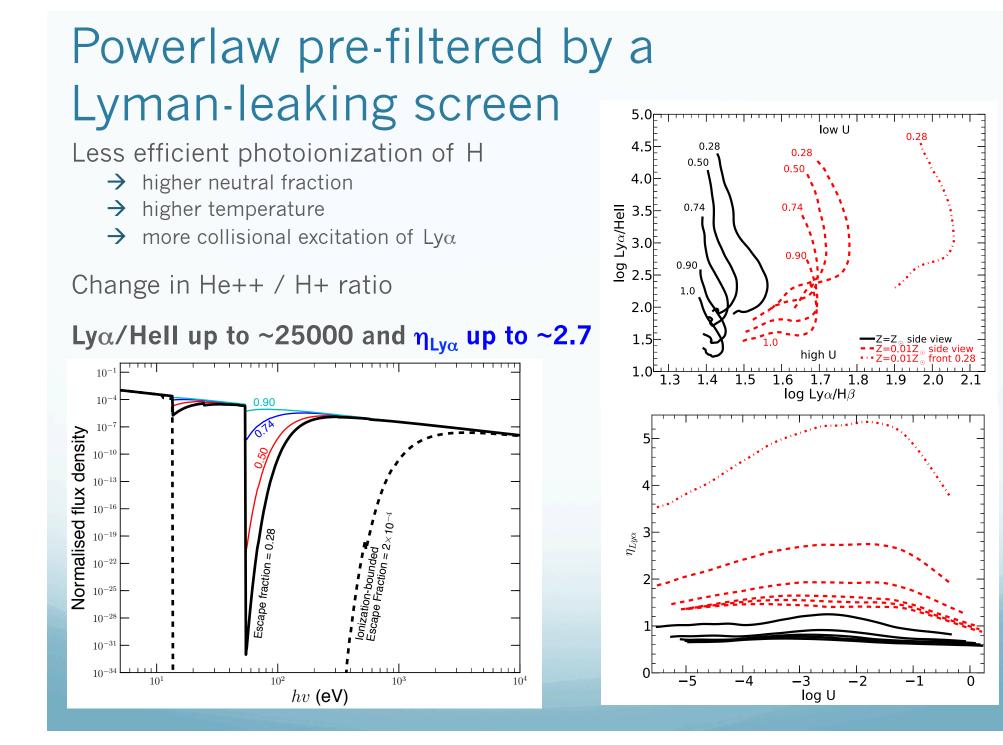

Enhanced Ly α production: Low U, low metallicity, and κ

Enhanced Ly α emission: Low U, low metallicity, and κ

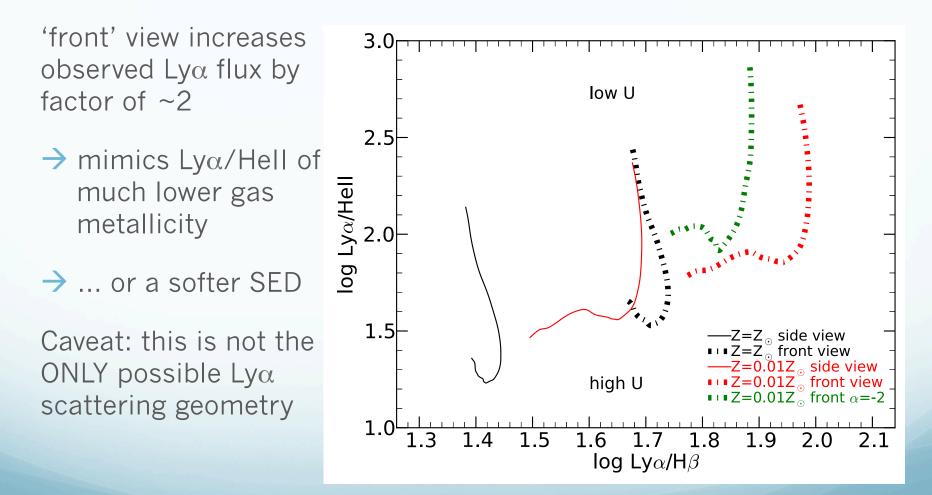
Hα/**H**β ratio confirms increased effect of collisional excitation

- \rightarrow at lower metallicity
- \rightarrow with κ -distribution




Powerlaw index α

• Softer SED (e.g. $\alpha = -2$) results in higher Ly α /Hell


• due to lower He⁺⁺ / H⁺

- ... but harder SED (e.g. α =-1) results in more Ly α photons per incident ionizing photon
 - extra collisional excitation due to higher T_e and higher H neutral fraction



Cloud viewing angle: reflection by HI at rear of cloud

Cloud viewing angle: reflection by HI at rear of cloud

Some possible implications

- Does this lead to biases in surveys for high-z Lyα nebulae?
 - → It should be easier to detect Ly α nebulae with higher rates of collisional excitation of Ly α . E.g., low metallicity halos, harder ionizing SED, etc.
- Ly α escape fraction in high-z galaxies

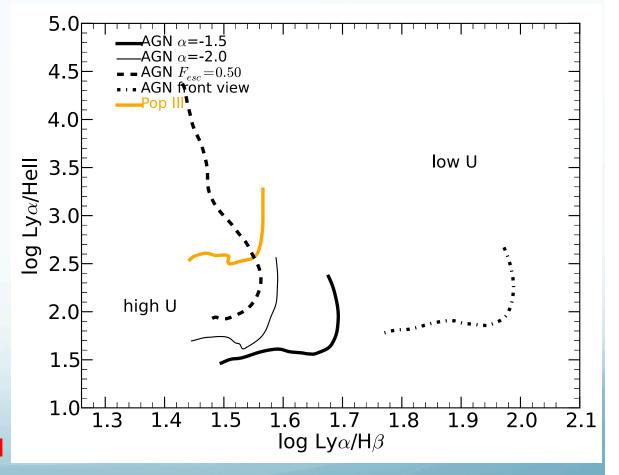
→ Case B values are not always appropriate. Enhancement of $Ly\alpha$ via collisional excitation needs to be taken into account, particularly if the gas metallicity is low and/or the ionizing SED is hard.

Can OV] 1213.8,1218.3 and HeII 1215.1 contaminate Ly α ?

- Highly-ionized, optically-thin BLR clouds (Shields et al. 1995)
 - OV] / Ly α up to ~1
 - HeII 1215.1 / Lyα up to ~0.2
- What about in low density NLR / Ly α halos?

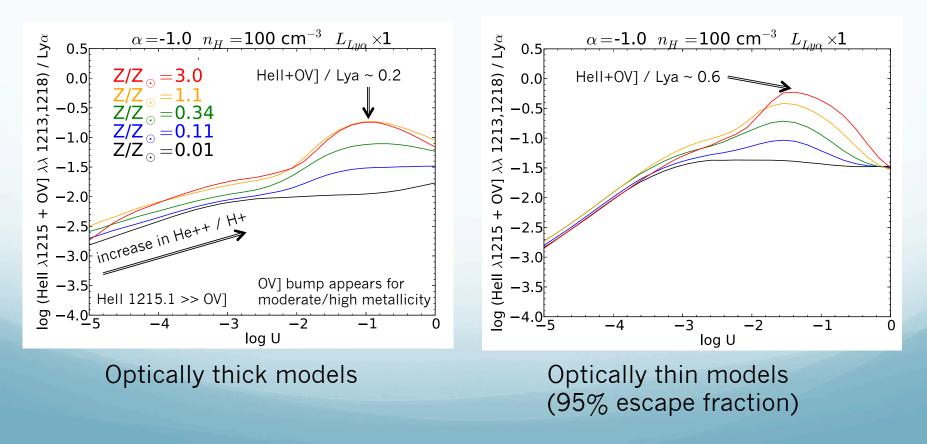
Pop III vs low metallicity AGN

Pop III models


- $T_{BB} = 67200 \text{ K}$ (equivalent to Teff = 80,000 K)
- log U = -5 to +0.25
- Z/Z_o = 0.01

AGN models

- 4 AGN SEDs
 - α=-1, -1.5, -2
 - or filtered F_{esc}=0.5
- 2 viewing angles
 - 'side' or 'front' view
- Other parameters
 - log U = .5 to +0.25
 - $Z/Z_{\odot} = 0.01$


Lyα. Hell and Hβ together separate Pop III and AGN powerlaw models

A degeneracy between Pop III and filtered AGN SED

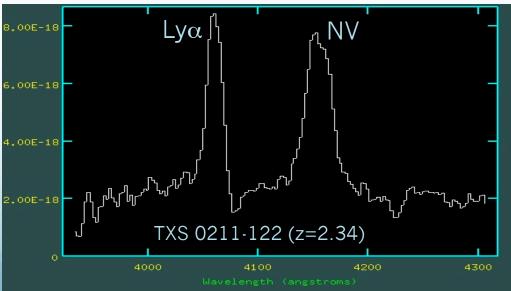
(Hell 1215.1 + OV]) / Ly α as a function of U and metallicity

- MAPPINGS 1e AGN photoionization models
 - log U from –5 to 0
 - gas metallicity (Z/Z $_{\odot}$) from 0.01 to 3.0 x Solar
 - ionizing powerlaw $\alpha = -1.0$ (similar results for other powerlaws)
 - gas density $n_{\rm H} = 100 \text{ cm}^{-3}$ (similar results for other densities, i.e. 1 or 10^4 cm^{-3})

A candidate OV] + Hell dominated object Radio-loud type 2 quasar TXS 0211-122 (z=2.34) from Vernet et al. (2001) Observed:

Ly α /NV = 0.6 \leftarrow Ly α /CIV = 0.3 \leftarrow Ly α /HeII 1640 = 0.6 \leftarrow

Theoretical (T=20,000K):


UV continuum polarization of 19 % implies dusty ISM

Line ratios consistent with dust-quenched Ly α

Dominant OV] + Hell ?

Ionization model (U=0.03, α=-1.0, 3 x Solar) OV]/NV = 0.5 OV]/CIV = 0.3 OV]/HeII 1640 = 0.7

Hell 1215.1/Hell 1640 = 0.33

Summary and Conclusions

• We have explored mechanisms to produce extremely high Ly α /HeII flux ratios, or to enhance the observed number of Ly α photons per incident ionizing photon, in extended AGN-photoionized nebulae at high-z

• High Lyα/Hell:

- **low gas metallicity** (higher Te \rightarrow more collisional excitation of Ly α)
- low ionization parameter (higher HII / HeIII abundance ratio)
- **soft ionizing SED** (higher HII / HeIII abundance ratio)
- **filtered ionizing SED** (higher Te + higher HI fraction + higher HI / HeIII)
- **κ-distributed electron energies** (collisional excitation of Lyα)
- High $\eta_{Ly\alpha}$ (ratio of Ly α to incident ionizing photons):
 - **low gas metallicity** (collisional excitation of Lyα)
 - **filtered ionizing SED SED** (higher Te + higher HI fraction + higher HI / HeIII)
 - **κ-distributed electron energies** (collisional excitation of Lyα)
- Combining multiple effects can produce large enhancements
- **OV] 1213.8,1218.3** doublet expected to significantly contaminate Ly α flux when the gas has **high metallicity**, **high U** and/or **low optical depth**