# Lyα Emission and the Circumgalactic Medium in Low Mass Galaxies Dawn Erb

Escape of Lyman radiation from galactic labyrinths Kolymbari, Crete, 12 September 2018

**University of Wisconsin Milwaukee** 

Image: Tonia Klein

Danielle Berg (Friday!) Matthew Auger Max Pettini David Kaplan Gabriel Brammer

Chuck Steidel Yuguang Chen

Escape of Lyman radiation from galactic labyrinths Kolymbari, Crete, 12 September 2018

Image: Tonia Klein

### Faint galaxies (probably) reionized the universe



Finkelstein et al 2012

# The CGM is crucial to $Ly\alpha$ and LyC escape



Ly $\alpha$ -emitting galaxies tend to be compact, low mass, low metallicity and highly ionized

Ideal targets for detailed study of reionization-era analogs

Lyα is a tool for characterization of the CGM

Image: Tonia Klein

### Ly $\alpha$ emission in low mass galaxies at z~2

arcsec

Ly $\alpha$  surface brightness (erg s<sup>-1</sup> cm<sup>-2</sup>



Reaching more extreme properties with gravitational lensing: new information brings new complications



Spatial + spectral information: studying the CGM with integral field spectroscopy of  $Ly\alpha$ 

# Targeting extreme objects with lensing



SL2S J021737–051329, gravitationally lensed galaxy at z=1.85  $M \neq 2 \ge 10^8 M_{\odot}, Z \sim 1/20 Z_{\odot}$ sSFR ~ 120 Gyr<sup>-1</sup> (mass doubling time ~ 8 Myr) SFR surface density ~ 58 M<sub>☉</sub> yr<sup>-1</sup> kpc<sup>-2</sup> Blue UV slope, negligible extinction

Brammer et al (+DKE) 2012, Berg et al 2018

### Extreme high equivalent width emission lines



Brammer et al (+DKE) 2012, Berg et al 2018

# Rest-frame UV spectrum



### No evidence for outflows



### Strong, blue-peaked Ly $\alpha$ emission



### Is there underlying $Ly\alpha$ absorption?



# Narrow-band imaging of $Ly\alpha$ with HST





Total NB flux implies 33% slit losses Photometric Ly $\alpha$  equivalent width 191 Å Ly $\alpha$  escape fraction ~9%

Erb et al 2018b, in prep

### $Ly\alpha$ equivalent width vs escape fraction



SL2S J021737

Harikane et al 2018

### Spatial distribution of $Ly\alpha$ emission



Erb et al 2018b, in prep

### Source reconstruction





Lyα and UV continuum peaks offset by 650 pc in source plane

# Lyα puzzles



Total equivalent width 191 Å, escape fraction ~9% 65 pc offset between  $Ly\alpha$  and UV continuum peaks Possible underlying absorption

### Comparison with local analogs

Rare local, low metallicity blue compact dwarfs have similar SEDs and optical line ratios



SBS 0335-052 has very similar high ionization lines, DLA

Does SL2S J021737 have a (partial) damped Ly $\alpha$  profile?

SBS 0335-052: James et al 2014



Need to spatially separate  $Ly\alpha$  and UV continuum, decouple equivalent width and escape fraction

Ly $\alpha$  emission from accretion or fluorescence?

Accretion may be consistent with blue  $Ly\alpha$  peak, lack of outflows

Additional ionizing source for fluorescence model?

Or intrinsic equivalent width is extreme, for a very short time? Work in progress!



Need to spatially separate  $Ly\alpha$  and UV continuum, decouple equivalent width and escape fraction

Ly $\alpha$  emission from accretion or fluorescence?

Accretion may be consistent with blue  $Ly\alpha$  peak, lack of outflows

Additional ionizing source for fluorescence model?

Or intrinsic equivalent width is extreme, for a very short time? Work in progress!

# The power of $Ly\alpha$ : spectral + spatial

# Extended Ly $\alpha$ halos from stacked NB imaging

# Imaging Imaging

# MUSE reveals statistical samples of individual Ly $\alpha$ halos



Steidel et al 2011 see also Momose et al 2014, 2016, many others

Wisotzki et al 2016 see also Leclercq et al 2017

Next step: spatially resolved spectroscopy

See also MUSE results, Floriane Leclerq's talk tomorrow

Highly ionized Ly $\alpha$ -emitting galaxies are prime targets for resolved spectroscopy of spatially-extended Ly $\alpha$  emission

## The Keck Cosmic Web Imager (KCWI)



Optical IFU commissioned on Keck II, September 2017 Optimized for low surface brightness spectroscopy Blue channel: 3500-5600 Å Multiple configurations Medium scale image slicer: 16.5" × 20.4" FOV BL grating: Resolution 2.5 Å, R ~ 1400-2200

### Q2343-BX418: a low mass galaxy at z=2.3



Erb et al 2010, 2018; Steidel et al 2014

### Q2343-BX418: a low mass galaxy at z=2.3



### The Lyα halo of BX418 as seen with KCWI



Observed with KCWI during commissioning, September 2017  $9 \times 1200s$  (3 hr) integration

Ly $\alpha$  detected with S/N  $\geq$  3 (1) per pixel to a radius of 16 (20) kpc Erb et al 2018

### Spatially resolved spectroscopy



### Spatially resolved spectroscopy



### Spatially resolved spectroscopy

















### Mapping the $Ly\alpha$ peak ratio



### Mapping the $Ly\alpha$ peak separation



### Peak ratio vs peak separation



# $Ly\alpha$ peak ratio and radial outflows







## Ly $\alpha$ peak separation



### Ly $\alpha$ peak separation and H $\alpha$ velocity dispersion



### More observations + more models needed



Observations of similar targets underway this fall Are BX418's patterns of peak ratio and separation typical?

Spatially resolved radiative transfer models required

# Summary

 $Ly\alpha$  emission is a powerful tool for the characterization of the gas in and around galaxies

Reionization-era analogs are prime targets



Gravitational lensing enables the study of more extreme objects at higher spatial (and spectral) resolution

More information = more challenges!



Spatially resolved spectroscopy is the next step

More data + more models required