



**Escape of Lyman radiation from galactic labyrinths:** 

# A Hard Ionising Spectrum in z=3 Lyman Alpha Emitters

# Kimihiko Nakajima

(NAOJ  $\rightarrow$  DAWN, Copenhagen)

In collaboration with

R. S. Ellis (UCL), T. Fletcher (UCL), B. E. Robertson (UCSC), D. P. Stark (U. Arizona),

A. K. Inoue (Osaka Sangyo U.), I. Iwata (Subaru/Halifax)

# Lya emitters (LAEs):



Nakajima et al. 2016

See also Nakajima & Ouchi 2014, Erb+2016, Trainor+2016 Kojima+2017; D. Erb's & R. Trainor's Talks

# Lya emitters (LAEs):



See also Nakajima & Ouchi 2014, Erb+2016, Trainor+2016 Kojima+2017; D. Erb's & R. Trainor's Talks

See also Iwata+2009, Mostardi+2013,2015, Verhamme+2017, Steidel+2018; D. Schaerer's & R. Trainor's Talks

# Lya emitters (LAEs):



 $\xi_{
m ion}=\dot{n}_{
m ion}/L_{
m UV}$ 

$$\xi_{
m ion}=\dot{n}_{
m ion}/L_{
m UV}$$

#### z=3.1 LAE's MOSFIRE K spectrum



Nakajima et al. 2016 Refer also to Trainor+2016







#### Nature of Ionising Spectrum Examined by UV Emission lines



Nakajima et al. 2018a (A&A) in collaboration with VUDS

### **UV line Diagnostics of ξion**



Nakajima et al. 2018a (A&A) in collaboration with VUDS

See also Stark+2014, Gutkin+2016

### **UV line Diagnostics of ξion**



Nakajima et al. 2018a (A&A) in collaboration with VUDS

See also Stark+2014, Gutkin+2016

#### VLT/VIMOS (11hrs) Observation Identifying Lya from 70 Faint z=3 LAEs



Nakajima et al. 2018b (MNRAS)

### VLT/VIMOS (11hrs) Observation Identifying Lya from 70 Faint z=3 LAEs



#### VLT/VIMOS (11hrs) Observation Identifying Lya from 70 Faint z=3 LAEs



#### VLT/VIMOS (11hrs) Observation Identifying UV lines in Stacks of 70 z=3 LAEs



#### **Strong CIII] Associated with Strong Lya**



Nakajima et al. 2018b

See also F. Marchi's Talk

#### **Stronger LAEs Characterised by Lower metallicity**



Nakajima et al. 2018b

#### **Stronger LAEs Characterised by Lower metallicity**



Nakajima et al. 2018b

Nakajima et al. 2018a

```
Stronger LAEs: Z = 0.05 - 0.2 Z_{sun}
Weaker LAEs: Z = 0.1 - 0.5 Z_{sun}
```

#### LAEs' Hard ξion Confirmed with UV line analysis



#### LAEs' Hard ξion Confirmed with UV line analysis



Nakajima et al. 2018b

 Stronger LAEs:
 log ξion =  $25.68 \pm 0.13$  

 Weaker LAEs:
 log ξion =  $25.54 \pm 0.09$ 

#### LAEs' Hard ξion for given UV luminosity



LBGs: Uniform  $\xi_{ion}$  (~25.2--25.4), independent of Muv, z LAEs: Larger  $\xi_{ion}$  (~25.5--25.7), particularly for faintest LAEs  $\rightarrow$  Highly Ionised & Escape of LyC photons in LAEs

### Summary: Lya emitters (LAEs):

