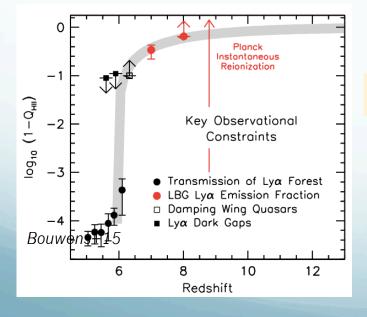
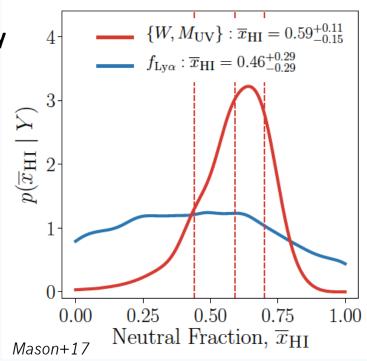
High Ly-α visibility from a reionized overdensity at z~7

Marco Castellano

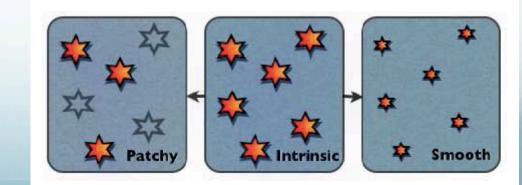
INAF- Osservatorio Astronomico di Roma

with L. Pentericci, F. Marchi, P. Dayal, A. Fontana, A. Hutter, E. Vanzella, M. Dickinson, M. Giavalisco, R. Maiolino, et al.

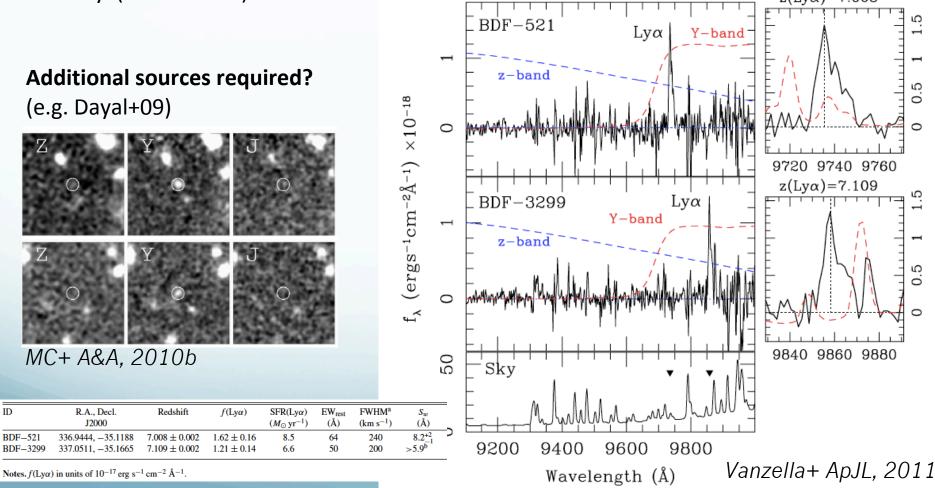


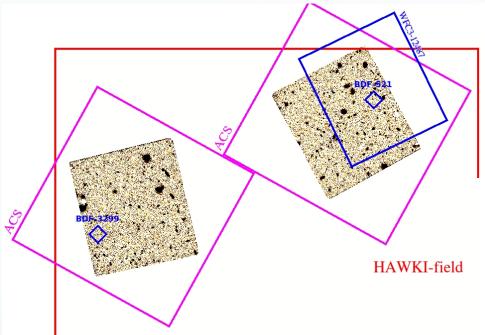


Timeline and sources of HI Reionization


*Decline of Lyα visibility in star-forming galaxies key probe of late reionization (e.g. Stark+10, Fontana+10, Pentericci+11,+14, Schenker+12)

*Reionization timeline can be explained by the evolution of UV luminosity density from starforming galaxies (e.g. Bouwens+15, Robertson+15).

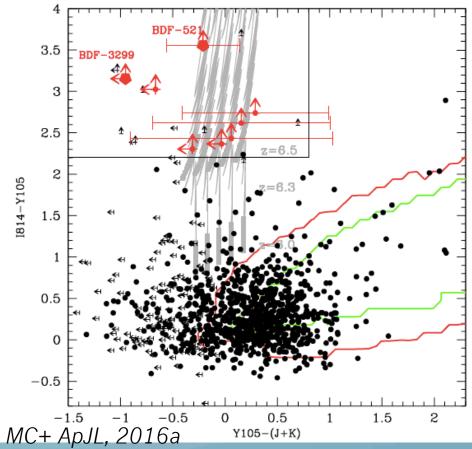

Patchy topology favoured (Treu+12, Pentericci+14)


A space oddity at z=7: two close-by strong LAEs

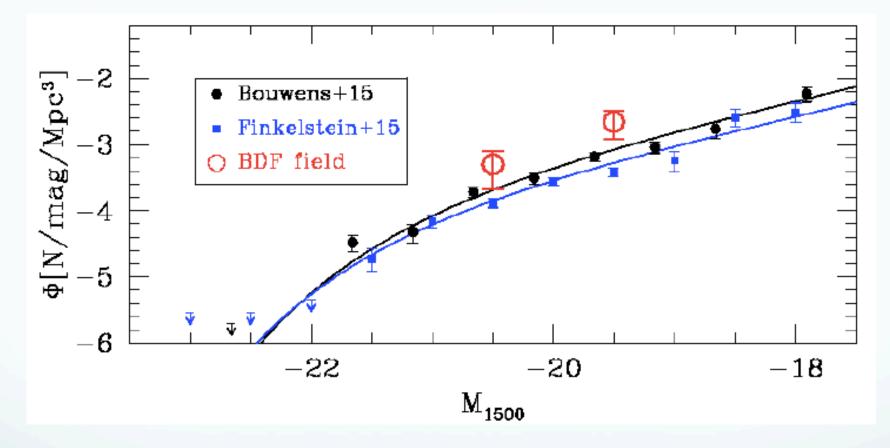
In the overall paucity of Ly α lines: one line of sight with twin bright emitters among the 8 l.o.s. investigated in Pentericci+14.

The BDF4 field (Lehnert&Bremer 03) hosts two close-by (1.9 pMpc projected distance) EW~50-60AA emitters. Their L_{UV} cannot build a large enough HII region to explain line visibility (Vanzella+11). $z(Ly\alpha)=7.008$

A closer look at the BDF region with HST


Previous Hawk-I data limited to Y~26.5.

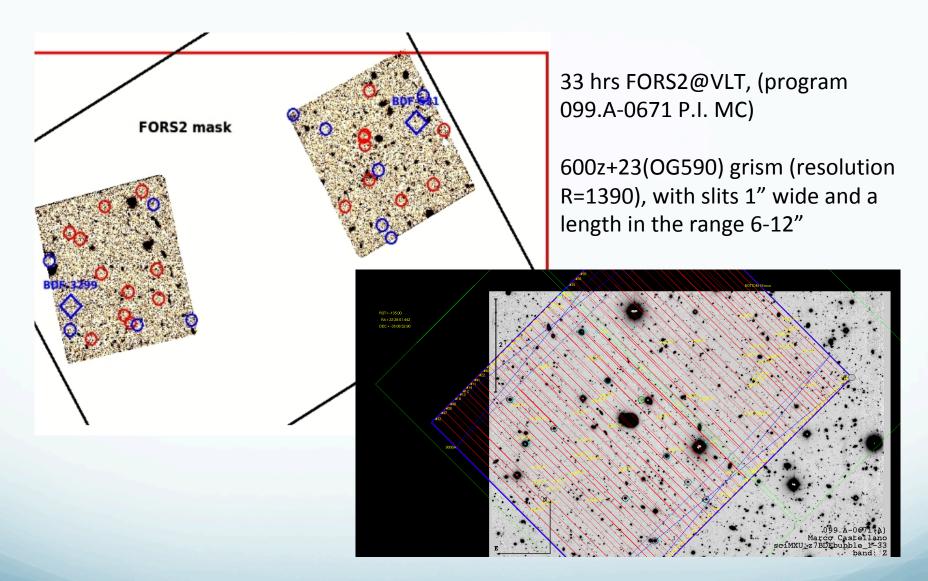
Six robust LBGs recovered at Y105~26.5-27.5 (S/N>10)


$$\begin{split} (S/N(I_{814}) < 1) &\wedge (I_{814} - Y_{105} > 2.2) \\ Y_{105} - (J + K) < 0.8 \\ (S/N(Y_{105}) > 10) &\wedge (S/N(V_{606})) < 1, \end{split}$$

HST Cycle 22 program (PI MC) to look for surrounding, fainter LBGs.

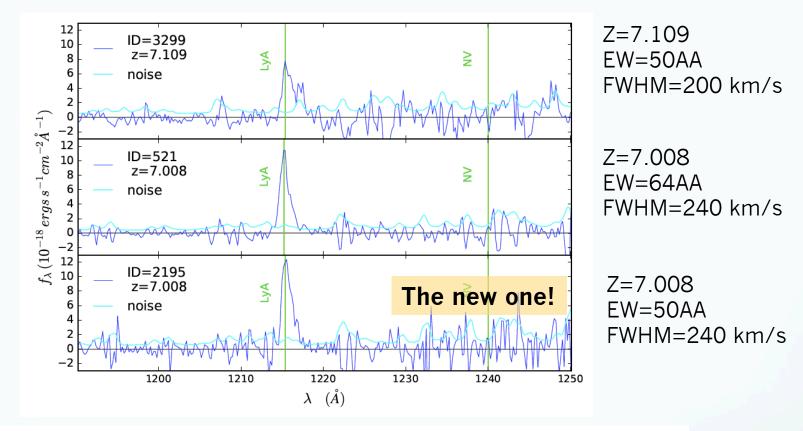
14 orbits with V606, I814, Y105.

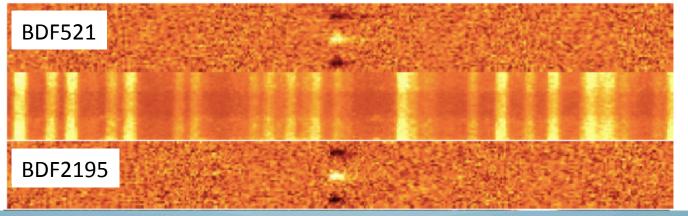
An overdensity of LBGs at z~7

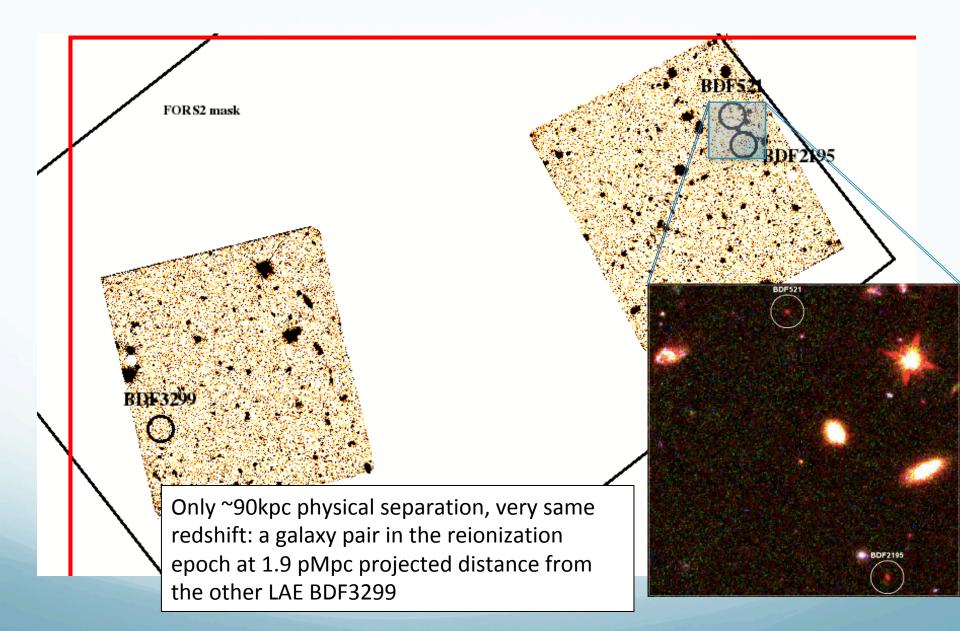


Observed= 8 objects in two pointings. Expected ~1.8-2.9 objects.

The BDF field is 3-4x overdense wrt average: consistent with a positive relation between line visibility and galaxy density as in *inside-out reionization scenarios*. (e.g. McQuinn+ 07, Wyithe&Loeb 07, Dayal+ 09). *No similar clustering around bright z~7 LBGs in CANDELS GS*.


MC+ ApJL, 2016a


Spectroscopic follow-up

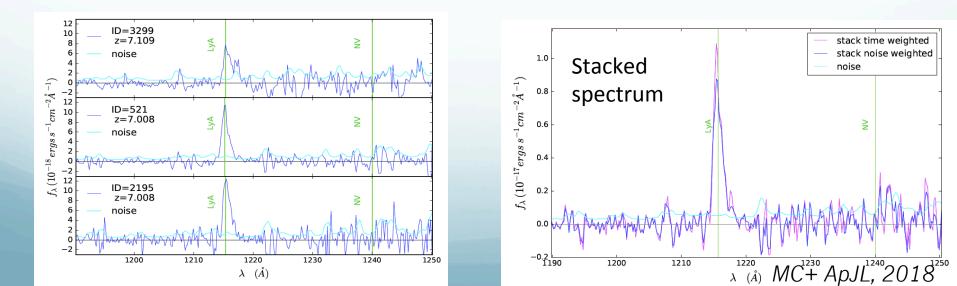

Observed 14 robust S/N(Y105)>5 z~7 candidates, plus z~6 fillers and lower quality LBGs

A third bright emitter at the same redshift

A third bright emitter at the same redshift

No Ly α from any of the faint galaxies

Sample	Total	Bright	Faint
Observed	17	5	12
Detected in Ly α	3	3	0

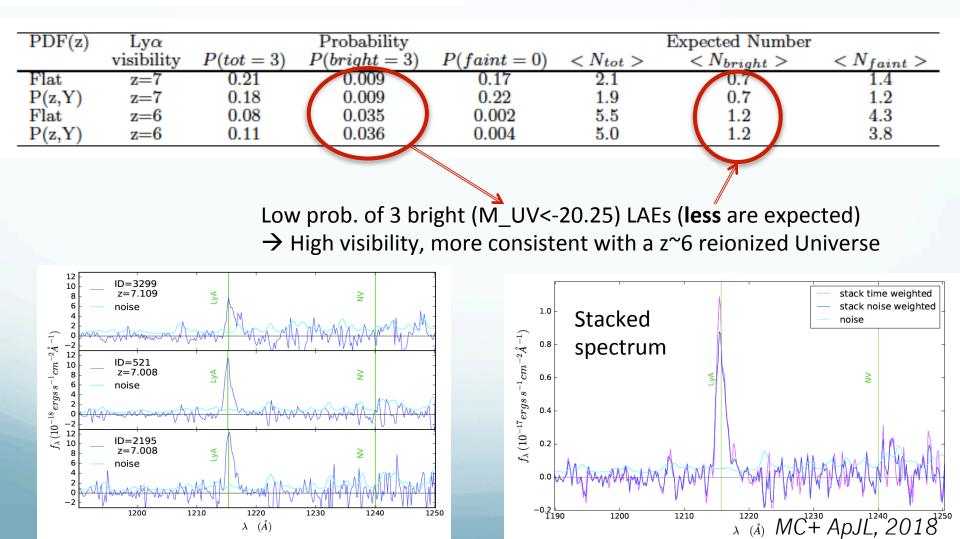

3 out of 5 "bright" LBGs have Ly $\!\alpha$

No detections from faint (Y>26.7) sources

PDF(z)	$Ly\alpha$	Probability			Expected Number		
	visibility	P(tot = 3)	P(bright = 3)	P(faint = 0)	$\langle N_{tot} \rangle$	$< N_{bright} >$	$< N_{faint} >$
Flat	z=7	0.21	0.009	0.17	2.1	0.7	1.4
P(z,Y)	z=7	0.18	0.009	0.22	1.9	0.7	1.2
Flat	z=6	0.08	0.035	0.002	5.5	1.2	4.3
P(z,Y)	z=6	0.11	0.036	0.004	5.0	1.2	3.8

Comparing number of detected lines to number of expected detections under different hypothesis: - peaked ("Flat" at z=7) or wide ("P(z,Y)") redshift distribution

- z=7 (low) or z=6 (high) line transmission through the IGM



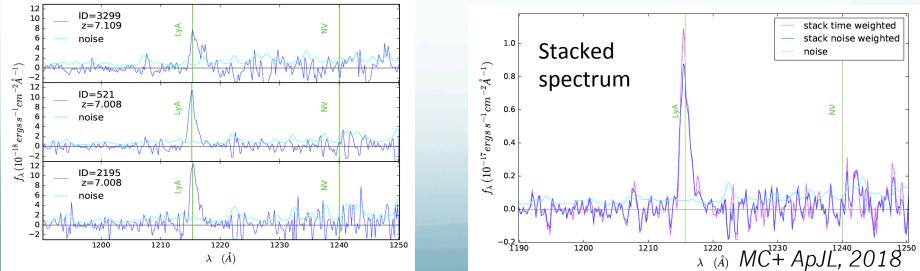
No Ly α from any of the faint galaxies

Sample	Total	Bright	Faint
Observed	17	5	12
Detected in Ly α	3	3	0

3 out of 5 "bright" LBGs have Ly α

No detections from faint (Y>26.7) sources

No Ly α from any of the faint galaxies


Sample	Total	Bright	Faint
Observed	17	5	12
Detected in Ly α	3	3	0

3 out of 5 "bright" LBGs have Ly $\!\alpha$

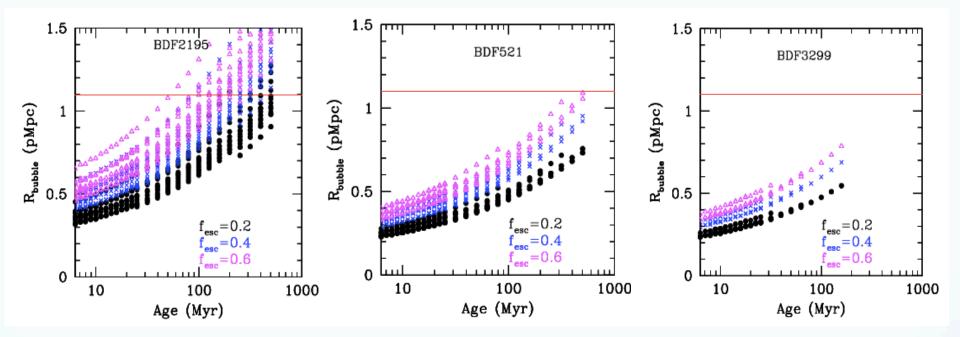
No detections from faint (Y>26.7) sources

PDF(z)	$Ly\alpha$		Probability			Expected Number	
	visibility	P(tot = 3)	P(bright = 3)	P(faint = 0)	$\langle N_{tot} \rangle$	$< N_{bright} >$	$< N_{f_{mint}} >$
Flat	z=7	0.21	0.009	0.17	2.1	0.7	1.4
P(z,Y)	z=7	0.18	0.009	0.22	1.9	0.7	1.2
Flat	z=6	0.08	0.035	0.002	5.5	1.2	4.3
P(z,Y)	z=6	0.11	0.036	0.004	5.0	1.2	3.8

Low prob. of 0 faint (M_UV>-20.25) LAEs (**more** are expected) \rightarrow Low visibility, more consistent with z~7 half-neutral Universe

Possible scenarios

Sample	Total	Bright	Faint	PDF(z)	$Ly\alpha$ visibility	$< N_{tot} >$	Expected Number $< N_{bright} >$	$< N_{faint} >$
Observed Detected in $Ly\alpha$	$\frac{17}{3}$	5	$\frac{12}{0}$	Flat P(z, Y)	z=7 z=7	$\frac{2.1}{1.9}$	0.7 0.7	1.4 1.2
				${\mathop{\rm Flat}} { m P(z,Y)}$	z=6 z=6	$5.5 \\ 5.0$	$\begin{array}{c} 1.2 \\ 1.2 \end{array}$	4.3 3.8

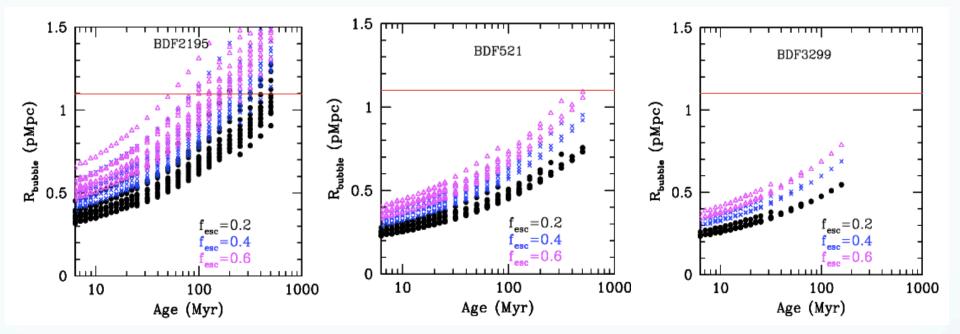

Bright galaxies are in a reionized "bubble" but faint galaxies are outside.

- → Bubbles are created by the bright galaxies alone (SFR and/or AGN), or by bright galaxies+ objects beyond the current BDF detection limit (M_{UV}>-19, e.g. Vanzella+17a,b).
- → Lya from bright galaxies is boosted by velocity offsets and/or enhanced photon production (Mason+2018, Stark+2017).
- Bright and faint galaxies are all members of the reionized "bubble" but some mechanisms decrease Lyα escape from faint galaxies.

→ Accelerated evolution of overdensity members: bright galaxies are young with high SFR, faint LBGs are more evolved and dustier.

→ Recombination of neutral hydrogen in the regions close to overdensity members, velocity shifts (higher in massive galaxies) are needed to make the line visible to us. MC+ApJL, 2018

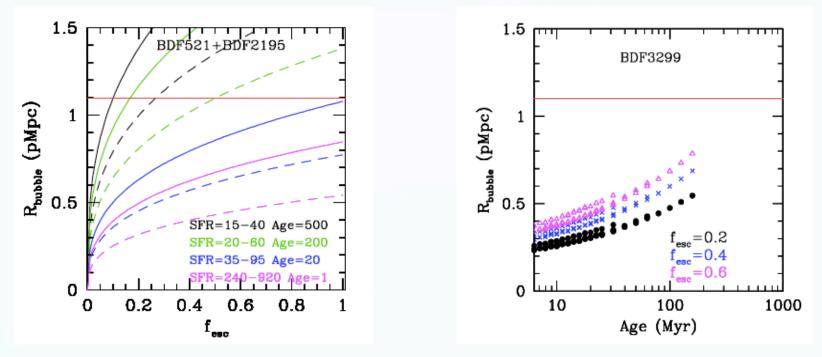
Are bright galaxies enough?



We estimate the **size of the bubble** (e.g. Madau 1999) **created by each galaxy** for all SED-fitting models compatible (68%c.l.) with the observed photometry.

Constant SFR, BPASS V2.0 libraries, Calzetti extinction. *Escape fraction of UV ionizing photons (f_{esc}) varied from 0 to 1.*

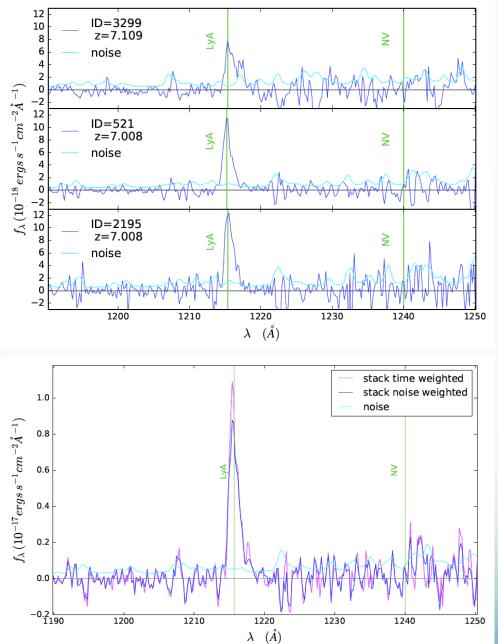
Compare to size needed to have Ly α redshifted to us (Loeb et al. 2005)


Are bright galaxies enough?

BDF521 and BDF2195 need a high $f_{esc} > 20-60\%$ to create a large enough bubble in a few 100s Myrs of constant SFR (~10-50 M_{sun}/yr).

BDF3299 is unable to create its own bubble even assuming 100% escape fraction and long lasting SFH.

Are bright galaxies enough?

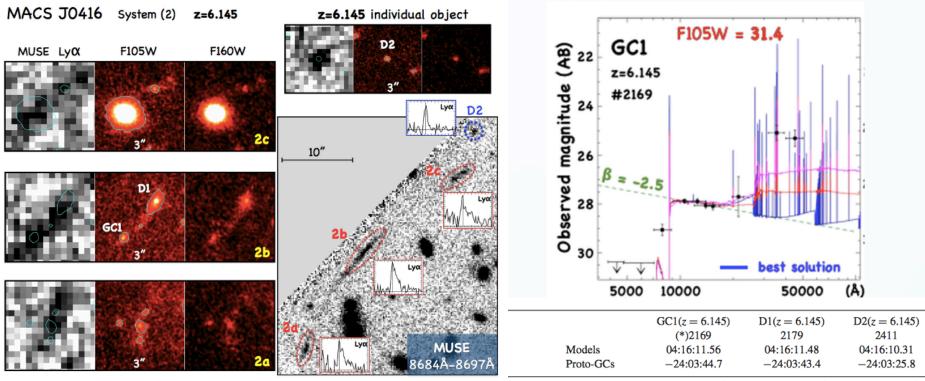


When summing the two contributions the BDF521-BDF2195 pair can create a large enough bubble with f_{esc}>10-15% and moderate SFRs over > 400Myr lifetime.

Adding the contribution of 220 km/s shifts f_{esc} <10% can do the job.

But no way for BDF3299 which is >2 pMpc distance from the pair.

What about AGN?



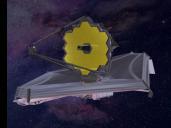
$Ly\alpha/NV$ >~8-10 on single spectra

Ly α /NV>17 on stacked spectrum

Limits not enough to rule out AGN. Not to mention past AGN activity...

Contribution from clustered ultra-faint galaxies?

Spectroscopy from MUSE


The luminosity, mass and size range we are probing is the one predicted for GC progenitors at z>3

Vanzella et al. 2017b,c and 2018a

84Å-8697Å	Proto-GCs	-24:03:44.7	-24:03:43.4	-24:03:25.8
Stellar mass (10 ⁶ M _O)	1, 10	$68_{[21,3273]}\mu_{tot}^{-1}$	$380_{[368,585]}\mu_{tot}^{-1}$	$16_{[12,1027]}\mu_{tot}^{-1}$
SFR (M _{\odot} yr ⁻¹)	0.2, 2.0	$54_{[1,165]}\mu_{tot}^{-1}$	$275_{[131,585]}\mu_{tot}^{-1}$	$5_{[0.5,48]}\mu_{\rm tot}^{-1}$
Age (Myr)	5	1.3[1, 708]	1.4[1, 3]	3.2[1, 710]
E(B-V)	$\simeq 0$	≲0.15	0.10	0.0
$R_{\rm e}$ (UV) (pc)	16, 35(**)	16 ± 7	140 ± 13	<100
$R_{\rm c}$ (UV) (pc)	"	<30	150 ± 20	<100
$\Sigma_{SMD} (M_{\odot} pc^{-2})$	800-1720	1400_{-900}^{+2400}	295^{+100}_{-80}	>85
Σ_{SFR} ($M_{\bigodot}yr^{-1}pc^{-2}$)	$(1.6 - 3.4)10^{-4}$	2.7×10^{-3}	2.3×10^{-4}	$>5.3 \times 10^{-5}$
m(1500 Å)		31.4 ± 0.2	29.7 ± 0.2	29.6 ± 0.3
M(1500 Å)	>-17	-15.3	-17.0	-17.1
$\beta_{\rm UV}$	$\lesssim -2.5$	-2.52 ± 0.36	-2.40 ± 0.16	-2.85 ± 0.43
$\mu_{\rm tot}$	_	25.0 ± 2.5	19.0 ± 2.0	3.0 ± 0.2
$\mu_{ ext{tang}}$	-	17.5 ± 2.0	13.4 ± 1.5	1.7 ± 0.1
f(+)/f(-)	_	≃2.5	≃2.5	-

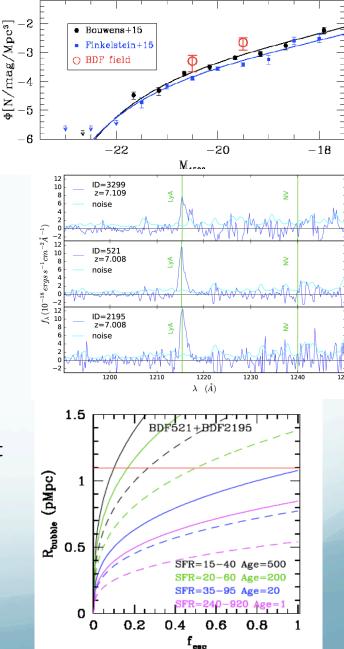
Waiting for JWST

JWST-NIRSPEC can easily detect optical lines, and look for other faint lines in the UV range. We will be able to:

 Assess whether faint candidates are members of the localized overdensity at z~7.0-7.1 as the bright ones.

(2) Perform accurate measurements of SFR, extinction and age (H α luminosity, H α /H β and H α /UV ratios) to constrain re-ionization capabilities.

(3) Measure velocity shifts between Ly α and UV/optical lines.


(4) Probe signatures of a high escape fraction (e.g. Zackrisson+13, Verhamme+15, de Barros+16, Chisholm+18 etc)

5 Probe signatures of AGN or of hard ionizing stellar spectra (e.g. Stark+17, Mainali+17, Senchyna+17, Schaerer+18).

6 Confirm a low neutral fraction looking for blue wings in high-resolution Lyα spectra (e.g. Hu+16)

Summary and conclusions

- ♦ Three close-by z~7 LAEs in the BDF field embedded in an overdensity of faint LBGs. They are all L~L* galaxies.
- \diamond Two LAEs form a pair at ~90 kpc distance.
- Lyα fraction much higher than average at z~7 : patchy scenario (see Pentericci+14) likely due to clustering.
- Consistent with the presence of overlapping reionized "bubbles" of ~5Mpc radius.
- ↔ Puzzling lack of Lyα from faint companions: low Lyα escape from faint galaxies?
- ♦ The pair BDF521-BDF2195 can reionize their surroundings with "reasonable" f_{esc} ~5-20%.
- ♦ BDF3299 would require other (ultra-faint?) sources, or AGN (but $Ly\alpha/NV>10$).
- ♦ Ideal target for JWST to discriminate among various scenarios!
- Hot topic for the future: connecting galaxy overdensity and 21cm signal with SKA (e.g. Hutter+16).

