

Ryan Trainor / Franklin & Marshall College

Charles Steidel, Milan Bogosavljević, Gwen Rudie, Allison Strom, Alice Shapley, Naveen Reddy, Max Pettini, Noah Lamb

Escape of Lyman radiation from galactic labyrinths 13 September 2018, OAC, Kolymbari, Crete

outline

- Empirical trends of Lyα emission vs. proxies for production & escape (8 minutes)
- 2. **Spatially resolved** Lyα emission (2 minutes)
- Interpreting ionizing emission from high-z galaxies (4 minutes)

Keck Baryonic Structure Survey

- **KBSS** includes 1000+ LBGs at $z \approx 2-3$ with UV+Opt spec
 - − $L \approx L_*$ galaxies, log $M_* \approx 9.5$ −11.5, $M_{UV} \approx 20.5$
 - Rudie+ 2012; RFT+ 2012; Steidel+ 2014, 2016; Strom+ 2017

LIS absorption suggests ISM porosity

13 September 2018

LIS absorption suggests ISM porosity

See also e.g., Shapley+ 2003; Steidel+ 2010; Erb, Steidel, RFT+ 2014; c.f. Henry+ 2015

13 September 2018

BPT-Ly α relation

See also: Steidel+ 2014, Shapley+ 2015, Sanders+ 2015

13 September 2018

BPT-Ly α relation

See also: Hagen+2016, Erb+ 2016, Nakajima+2013

13 September 2018

$Ly\alpha$ tracks [OIII]/H β (nebular excitation)

13 September 2018

$Ly\alpha$ tracks [OIII]/H β (nebular excitation)

13 September 2018

production vs. escape

13 September 2018

production vs. escape

13 September 2018

Ly α vs. production+escape

13 September 2018

Ly α vs. production+escape

13 September 2018

fitting Ly α halos in stacks

fitting Ly α halos via MCMC

faint galaxies and LAEs are LCEs

- Average "escape fraction" of 9%
 - Model dependent!!
- Variation in stacks: 0% to 50%+
- L > L* don't emit LyC
- Strong function of $W_{Ly\alpha}$ (LAEs emit strongly)

13 September 2018

significant (spatially-correlated) variation in sightlines

is bimodal 13 September 2018

0.15

0.10 0.05

0.00 -0.05

0.15

0.10 0.05

0.00 -0.050.15

0.10 0.05 0.00 -0.05

0.15

0.10

0.05

0.00 -0.05

0.15

0.100.05

0.00

-0.05

0

 f_{900} [μ Jy]

significant (spatially-correlated)

summary

- Lyman radiation depends on galaxy properties
 - Porosity of ISM
 - (example probe: absorption lines)
 - Photon production and local escape (example probe: emission lines)
- **Observed** Lyman radiation depends on galaxy properties + **CGM** + **IGM** (with large variation)
 - Large (N \gtrsim 30), representative samples are required to average over IGM and establish trends
- The trends look good for galaxies + reionization

13 September 2018