RESEARCH
<< back
The Effects of the Local Environment and Stellar Mass on Galaxy Quenching to z~3

B. Darvish, B. Mobasher, D. Sobral, A. Rettura, N. Z. Scoville, A. Faisst, P. Capak

Abstract
We study the effects of the local environment and stellar mass on galaxy properties using a mass complete sample of quiescent and star-forming systems in the COSMOS field at z≲ 3. We show that at z≲ 1 the median star formation rate (SFR) and specific SFR (sSFR) of all galaxies depend on the environment, but they become independent of the environment at z ≳ 1. However, we find that only for star-forming galaxies, the median SFR and sSFR are similar in different environments regardless of redshift and stellar mass. We find that the quiescent fraction depends on the environment at z ≲ 1 and on stellar mass out to z ̃ 3. We show that at z ≲ 1 galaxies become quiescent faster in denser environments and that the overall environmental quenching efficiency increases with cosmic time. Environmental and mass quenching processes depend on each other. At z ≲ 1 denser environments more efficiently quench galaxies with higher masses (log(M/{M}) ≳ 10.7), possibly due to a higher merger rate of massive galaxies in denser environments. We also show that mass quenching is more efficient in denser regions. We show that the overall mass quenching efficiency ({∊ }{mass}) for more massive galaxies (log(M/{M}) ≳ 10.2) rises with cosmic time until z ̃ 1 and then flattens out. However, for less massive galaxies, the rise in {∊ }{mass} continues to the present time. Our results suggest that environmental quenching is only relevant at z ≲ 1 and is likely a fast process, whereas mass quenching is the dominant mechanism at z ≳ 1 with a possible stellar feedback physics.

Keywords
galaxies: evolution, galaxies: high-redshift, large-scale structure of universe

The Astrophysical Journal
Volume 825, Number 113
2016 July

>> ADS>> DOI

Instituto de Astrofísica e Ciências do Espaço Universidade do Porto Faculdade de Ciências da Universidade de Lisboa
Fundação para a Ciência e a Tecnologia COMPETE 2020 PORTUGAL 2020 União Europeia