<< back
Fermions in hybrid loop quantum cosmology

B. E. Navascues, G. A. M. Marugan, M. Martín-Benito

This work pioneers the quantization of primordial fermion perturbations in hybrid loop quantum cosmology (LQC). We consider a Dirac field coupled to a spatially flat, homogeneous, and isotropic cosmology, sourced by a scalar inflaton, and treat the Dirac field as a perturbation. We describe the inhomogeneities of this field in terms of creation and annihilation variables, chosen to admit a unitary evolution if the Dirac fermion were treated as a test field. Considering instead the full system, we truncate its action at quadratic perturbative order and construct a canonical formulation. In particular this implies that, in the global Hamiltonian constraint of the model, the contribution of the homogeneous sector is corrected with a quadratic perturbative term. We then adopt the hybrid LQC approach to quantize the full model, combining the loop representation of the homogeneous geometry with the Fock quantization of the inhomogeneities. We assume a Born-Oppenheimer ansatz for physical states and show how to obtain a Schrdinger equation for the quantum evolution of the perturbations, where the role of time is played by the homogeneous inflaton. We prove that the resulting quantum evolution of the Dirac field is indeed unitary, despite the fact that the underlying homogeneous geometry has been quantized as well. Remarkably, in such evolution, the fermion field couples to an infinite sequence of quantum moments of the homogeneous geometry. Moreover, the evolved Fock vacuum of our fermion perturbations is shown to be an exact solution of the Schrodinger equation. Finally, we discuss in detail the quantum back reaction that the fermion field introduces in the global Hamiltonian constraint. For completeness, our quantum study includes since the beginning (gauge-invariant) scalar and tensor perturbations, that were studied in previous works.

General Relativity and Quantum Cosmology

Physical Review D
Volume 96, Issue 4, Page 25
2017 August

>> ADS>> DOI

Faculdade de Ciências da Universidade de Lisboa Universidade do Porto Faculdade de Ciências e Tecnologia da Universidade de Coimbra
Fundação para a Ciência e a Tecnologia COMPETE 2020 PORTUGAL 2020 União Europeia