<< back
C/O vs. Mg/Si ratios in solar type stars: The HARPS sample

L. SuŠrez-Andrťs, G. Israelian, J. I. GonzŠlez HernŠndez, V. Zh. Adibekyan, E. Delgado Mena, N. C. Santos, S. G. Sousa

Context. Aims. We aim to present a detailed study of the magnesium-to-silicon and carbon-to-oxygen ratios (Mg/Si and C/O) and their importance in determining the mineralogy of planetary companions. Methods. Using 499 solar-like stars from the HARPS sample, we determined C/O and Mg/Si elemental abundance ratios to study the nature of the possible planets formed. We separated the planetary population in low-mass planets (<30M) and high-mass planets (>30M) to test for a possible relation with the mass. Results. We find a diversity of mineralogical ratios that reveal the different kinds of planetary systems that can be formed, most of them dissimilar to our solar system. The different values of the Mg/Si and C/O can determine different composition of planets formed. We found that 100% of our planetary sample present C/O < 0.8. 86% of stars with high-mass companions present 0.8>C/O>0.4, while 14% present C/O values lower than 0.4. Regarding Mg/Si, all stars with low-mass planetary companion showed values between one and two, while 85% of the high-mass companion sample does. The other 15% showed Mg/Si values below one. No stars with planets were found with Mg/Si>2. Planet hosts with low-mass companions present C/O and Mg/Si similar to those found in the Sun, whereas stars with high-mass companions have lower C/O.

stars: abundances / stars: atmospheres / planetary systems

Astronomy and Astrophysics
Volume 614, Article Number A84
2018 June

>> ADS>> DOI

Instituto de Astrof√≠sica e Ci√™ncias do Espa√ßo Universidade do Porto Faculdade de Ciências da Universidade de Lisboa Funda√ß√£o para a Ci√™ncia e a Tecnologia
Outreach at IA