RESEARCH
<< back
Bright Opportunities for Atmospheric Characterization of Small Planets: Masses and Radii of K2-3 b, c, and d and GJ3470 b from Radial Velocity Measurements and Spitzer Transits

I. J. M. Crossfield, B. Benneke, B. J. Fulton, Lea Hirsch, A. W. Howard, H. Isaacson, E. Petigura, L. M. Weiss, X. Bonfils, C. D. Dressing, M. Werner, N. Astudillo-Defru, J.-M. Almenara, X. Delfosse, T. Forveille, C. Lovis, M. Mayor, F. Pepe, N. C. Santos, S. Udry, N. M. Law, A. del Olmo

Abstract

We report improved masses, radii, and densities for four planets in two bright M-dwarf systems, K2-3 and GJ3470, derived from a combination of new radial velocity and transit observations. Supplementing K2 photometry with follow-up Spitzer transit observations refined the transit ephemerides of K2-3 b, c, and d by over a factor of 10. We analyze ground-based photometry from the Evryscope and Fairborn Observatory to determine the characteristic stellar activity timescales for our Gaussian Process fit, including the stellar rotation period and activity region decay timescale. The stellar rotation signals for both stars are evident in the radial velocity data and are included in our fit using a Gaussian process trained on the photometry. We find the masses of K2-3 b, K2-3 c and GJ3470 b to be 6.48+0.990.93, 2.14+1.081.04, and 12.58+1.311.28 M respectively. K2-3 d was not significantly detected and has a 3-σ upper limit of 2.80 M. These two systems are training cases for future TESS systems; due to the low planet densities (ρ < 3.7 g cm3) and bright host stars (K < 9 mag), they are among the best candidates for transmission spectroscopy in order to characterize the atmospheric compositions of small planets.

Keywords
planets and satellites: composition; techniques: photometric; techniques: radial velocities

The Astronomical Journal
Volume 157, Number 3, Page 21
2019 February

>> ADS>> DOI

Instituto de Astrofísica e Ciências do Espaço Universidade do Porto Faculdade de Ciências da Universidade de Lisboa
Fundação para a Ciência e a Tecnologia COMPETE 2020 PORTUGAL 2020 União Europeia