RESEARCH
<< back
Evaluation of a method to retrieve temperature and wind velocity profiles of the Venusian nightside mesosphere from mid-infrared CO2 absorption line observed by heterodyne spectroscopy

K. Takami, H. Nakagawa, H. Sagawa, P. Krause, I. Murata, Y. Kasaba, T. Kuroda, S. Aoki, T. Kouyama, T. Kostiuk, T. A. Livengood, G. Gilli

Abstract
We evaluated a method for retrieving vertical temperature and Doppler wind velocity profiles of the Venusian nightside mesosphere from the CO2 absorption line resolved by mid-infrared heterodyne spectroscopy. The achievable sensitive altitude and retrieval accuracy were derived with multiple model spectra generated from various temperature and wind velocity profiles with several noise levels. The temperature profiles were retrieved at altitudes of 70–100 km with a vertical resolution of 5 km and a retrieval accuracy of ± 15 K. The wind velocity was also retrieved at an altitude of approximately 85 km with a vertical resolution of 10 km and a retrieval accuracy of ± 25–50 m/s. In addition, we studied an event and applied our method to spectra obtained by the HIPWAC instrument attached to the NASA/IRTF 3-m telescope on May 19–22, 2012. Retrieved wind velocities in a latitude of 33° S at 3:00 LT were interpreted as subsolar-to-antisolar (SS-AS) flows at altitudes of 84 ± 6 km and 94 ± 7 km, and they were stronger than expected. This result suggested that the transition between the retrograde superrotational zonal (RSZ) wind and SS-AS flow may occur at altitudes below 90 km which previously was predicted to be the transition region. This work provides a basis for our analysis of further observations obtained by a mid-infrared heterodyne spectrometer MILAHI attached to the Tohoku University 60-cm telescope at Haleakalā, Hawaii.

Keywords
Venus; Mesosphere; Temperature; Wind velocity; Mid-infrared heterodyne spectroscopy; CO2 absorption line

Earth, Planets and Space
Volume 72, Page 60
2020 May

>> ADS>> DOI

Instituto de Astrofísica e Ciências do Espaço Universidade do Porto Faculdade de Ciências da Universidade de Lisboa
Fundação para a Ciência e a Tecnologia COMPETE 2020 PORTUGAL 2020 União Europeia