<< back
Effective actions for loop quantum cosmology in fourth-order gravity

M. Miranda, D. Vernieri, S. Capozziello, F. S. N. Lobo

Loop quantum cosmology (LQC) is a theory which renders the Big Bang initial singularity into a quantum bounce, by means of short-range repulsive quantum effects at the Planck scale. In this work, we are interested in reproducing the effective Friedmann equation of LQC, by considering a generic f(R, P, Q) theory of gravity, where R = gμνRμν is the Ricci scalar, P = RμνRμν, and Q = RαβμνRαβμν is the Kretschmann scalar. An order reduction technique allows us to work in f(R, P, Q) theories which are perturbatively close to General Relativity, and to deduce a modified Friedmann equation in the reduced theory. Requiring that the modified Friedmann equation mimics the effective Friedmann equation of LQC, we are able to derive several functional forms of f(R, P, Q). We discuss the necessary conditions to obtain viable bouncing cosmologies for the proposed effective actions of f(R, P, Q) theory of gravity.

The European Physical Journal C
Volume 81, Issue 11
2021 November

>> ADS>> DOI

Faculdade de Ciências da Universidade de Lisboa Universidade do Porto Faculdade de Ciências e Tecnologia da Universidade de Coimbra
Fundação para a Ciência e a Tecnologia COMPETE 2020 PORTUGAL 2020 União Europeia