<< back
Euclid: Validation of the MontePython forecasting tools

S. Casas, J. Lesgourgues, N. Schöneberg, V. M. Sabarish, L. Rathmann, M. Doerenkamp, M. Archidiacono, E. Bellini, S. Clesse, N. Frusciante, M. Martinelli, F. Pace, D. Sapone, Z. Sakr, A. Blanchard, T. Brinckmann, S. Camera, C. Carbone, S. Ilic, K. Markovic, V. Pettorino, I. Tutusaus, N. Aghanim, A. Amara, L. Amendola, N. Auricchio, M. Baldi, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, V. Capobianco, V. F. Cardone, J. Carretero, M. Castellano, S. Cavuoti, A. Cimatti, R. Cledassou, G. Congedo, L. Conversi, Y. Copin, L. Corcione, F. Courbin, M. Cropper, H. Degaudenzi, J. Dinis, M. Douspis, F. Dubath, X. Dupac, S. Dusini, S. Farrens, M. Frailis, E. Franceschi, M. Fumana, S. Galeotta, B. Garilli, B. R. Gillis, C. Giocoli, A. Grazian, F. Grupp, L. Guzzo, S. V. H. Haugan, F. Hormuth, A. Hornstrup, K. Jahnke, M. Kümmel, A. Kiessling, M. Kilbinger, T. D. Kitching, M. Kunz, H. Kurki-Suonio, S. Ligori, P. B. Lilje, I. Lloro, O. Mansutti, O. Marggraf, F. Marulli, R. Massey, E. Medinaceli, S. Mei, M. Meneghetti, E. Merlin, G. Meylan, M. Moresco, L. Moscardini, E. Munari, S. -. Niemi, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, W. J. Percival, S. Pires, G. Polenta, M. Poncet, L. A. Popa, F. Raison, A. Renzi, J. D. Rhodes, G. Riccio, E. Romelli, M. Roncarelli, E. Rossetti, R. Saglia, B. Sartoris, P. Schneider, A. Secroun, G. Seidel, S. Serrano, C. Sirignano, G. Sirri, L. Stanco, J. -. Starck, C. Surace, P. Tallada-Crespí, A. N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, E. A. Valentijn, L. Valenziano, T. Vassallo, Y.-T. Wang, J. Weller, G. Zamorani, J. Zoubian, V. Scottez, A. Veropalumbo


Context. The Euclid mission of the European Space Agency will perform a survey of weak lensing cosmic shear and galaxy clustering in order to constrain cosmological models and fundamental physics.
Aims. We expand and adjust the mock Euclid likelihoods of the MontePython software in order to match the exact recipes used in previous Euclid Fisher matrix forecasts for several probes: weak lensing cosmic shear, photometric galaxy clustering, the cross-correlation between the latter observables, and spectroscopic galaxy clustering. We also establish which precision settings are required when running the Einstein–Boltzmann solvers CLASS and CAMB in the context of Euclid.
Methods. For the minimal cosmological model, extended to include dynamical dark energy, we perform Fisher matrix forecasts based directly on a numerical evaluation of second derivatives of the likelihood with respect to model parameters. We compare our results with those of previously validated Fisher codes using an independent method based on first derivatives of the Euclid observables.
Results. We show that such MontePython forecasts agree very well with previous Fisher forecasts published by the Euclid Collab oration, and also, with new forecasts produced by the CosmicFish code, now interfaced directly with the two Einstein–Boltzmann solvers CAMB and CLASS. Moreover, to establish the validity of the Gaussian approximation, we show that the Fisher matrix marginal error contours coincide with the credible regions obtained when running Monte Carlo Markov chains with MontePython while using the exact same mock likelihoods.
Conclusions. The new Euclid forecast pipelines presented here are ready for use with additional cosmological parameters, in order to explore extended cosmological models.

cosmology: theory / surveys / cosmology: observations / large-scale structure of Universe / cosmological parameters

Astronomy & Astrophysics
Volume 682, Article Number A90, Number of pages 33
2024 February

>> ADS>> DOI

Faculdade de Ciências da Universidade de Lisboa Universidade do Porto Faculdade de Ciências e Tecnologia da Universidade de Coimbra
Fundação para a Ciência e a Tecnologia COMPETE 2020 PORTUGAL 2020 União Europeia