RESEARCH
<< back
Wormhole geometries in modified teleparallel gravity and the energy conditions

C. G. B÷hmer, T. Harko, F. S. N. Lobo

Abstract
In this work, we explore the possibility that static and spherically symmetric traversable wormhole geometries are supported by modified teleparallel gravity or f(T) gravity, where T is the torsion scalar. Considering the field equations with an off-diagonal tetrad, a plethora of asymptotically flat exact solutions are found, which satisfy the weak and the null energy conditions at the throat and its vicinity. More specifically, considering T=0, we find the general conditions for a wormhole satisfying the energy conditions at the throat and present specific examples that satisfy the energy conditions throughout the spacetime. As a consistency check, we also verify that in the teleparallel equivalent of general relativity, i.e., f(T)=T, one regains the standard general relativistic field equations for wormhole physics. Furthermore, considering specific choices for the f(T) form and for the redshift and shape functions, several solutions of wormhole geometries are found that satisfy the energy conditions at the throat and its neighborhood. As in their general relativistic counterparts, these f(T) wormhole geometries present far-reaching physical and cosmological implications, such as being theoretically useful as shortcuts in spacetime and for inducing closed timelike curves, possibly violating causality.

Keywords
Higher-dimensional: gravity: and: other: theories: of: gravity - Exact: solutions - Modified: theories: of: gravity

Physical Review D
Volume 85, Issue 4, Page 044033_1
2012 February

>> ADS>> DOI

Instituto de Astrof├şsica e Ci├¬ncias do Espa├žo Universidade do Porto Faculdade de Ciências da Universidade de Lisboa Funda├ž├úo para a Ci├¬ncia e a Tecnologia
OUTREACH
Outreach at IA