T. Harko, T. S. Koivisto, __F. S. N. Lobo__

**Abstract**

We derive the field equations and the equations of motion for scalar fields and massive test particles in modified theories of gravity with an arbitrary coupling between geometry and matter by using the Palatini formalism. We show that the independent connection can be expressed as the Levi-Cività connection of an auxiliary, matter Lagrangian dependent metric, which is related with the physical metric by means of a conformal transformation. Similarly to the metric case, the field equations impose the nonconservation of the energy-momentum tensor. We derive the explicit form of the equations of motion for massive test particles in the case of a perfect fluid, and the expression of the extra-force is obtained in terms of the matter-geometry coupling functions and of their derivatives. Generally, the motion is non-geodesic, and the extra force is orthogonal to the four-velocity. It is pointed out here that the force is of a different nature than in the metric formalism. We also consider the implications of a nonlinear dependence of the action upon the matter Lagrangian.

**Keywords**

Gravitation - modified: theories: of: gravity- non-minimal: geometry-matter: coupling - Palatini: formalism

**Modern Physics Letters A**

Volume 26, Number 20, Page 1467

2011 June