<< back
Einstein-Gauss-Bonnet traversable wormholes satisfying the weak energy condition

M. R. Mehdizadeh, M. K. Zangeneh, F. S. N. Lobo

In this paper, we explore higher-dimensional asymptotically flat wormhole geometries in the framework of Gauss-Bonnet (GB) gravity and investigate the effects of the GB term, by considering a specific radial-dependent redshift function and by imposing a particular equation of state. This work is motivated by previous assumptions that wormhole solutions were not possible for the k =1 and α <0 case, where k is the sectional curvature of an (n -2 )-dimensional maximally symmetric space, and α is the Gauss-Bonnet coupling constant. However, we emphasize that this discussion is purely based on a nontrivial assumption that is only valid at the wormhole throat, and cannot be extended to the entire radial-coordinate range. In this work, we provide a counterexample to this claim, and find for the first time specific solutions that satisfy the weak energy condition throughout the entire spacetime, for k =1 and α <0 . In addition to this, we also present other wormhole solutions which alleviate the violation of the weak energy condition in the vicinity of the wormhole throat.

Physical Review D
Volume 91, Issue 8, Page 084004
2015 April

>> ADS>> DOI

Faculdade de Ciências da Universidade de Lisboa Universidade do Porto Faculdade de Ciências e Tecnologia da Universidade de Coimbra
Fundação para a Ciência e a Tecnologia COMPETE 2020 PORTUGAL 2020 União Europeia